Temperature and Humidity Dependent Reliability Analysis of RGB LED Chips

Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.

2013 ◽  
Vol 3 (2) ◽  
pp. 41
Author(s):  
Andrea Marisi ◽  
Revantino Revantino

Perkembangan teknologi di bidang Solid State Lighting selama dekade terakhir membuat diversifikasi penggunaan Light Emitting Diode untuk pelayanan pencahayaan umum. Balai Besar Bahan dan Barang Teknik sejak tahun 2011 telah melakukan penelitian dan pengembangan lampu LED berbasis Surface Mounting Device (SMD) 5050. Pada perancangan Printed Circuit Board (PCB) untuk memasangkan LED-smd tersebut, dilakukan analisis dimensi geometrik yang optimal sehingga dapat memancarkan cahaya ke segala arah dan memberikan persepsi kecerahan yang lebih baik. Untuk perancangan PCB tersebut, dipilih 2 (dua) model berbentuk silinder dengan memperhatikan rasio antara tinggi dan diameter alas. Dari pendekatan sumber titik dan perhitungan eksitansi luminus, diperoleh bahwa model dengan rasio ≈ 1 menghasilkan persepsi lebih cerah terhadap visual manusia.Kata kunci : dimensi geometrik, pendekatan sumber titik, eksitansi luminus, persepsi kecerahan


2018 ◽  
Vol 51 (7-8) ◽  
pp. 293-303 ◽  
Author(s):  
Chao-Ching Ho ◽  
You-Min Chen ◽  
Po-Chieh Li

Background: In this study, a machine vision–based method was developed for automated in-process light-emitting diode chip mounting lines with position uncertainty. In order to place the tiny light-emitting diode chips on the pattern of a printed circuit board, a highly accurate mounting process is achieved with online feedback of the visual assistance. Methods: The system consists of a charge-coupled device camera, a six-axis robot arm, and a delta robot. The lighting system is a critical point for the in-process machine vision problem. Hence, designing the optimal lighting solution is one of the most difficult parts of a machine vision system, and several lighting techniques and experiments are examined in this study. In order to commence the mounting process, the light-emitting diode chip targets inside the camera field were identified and used to guide the delta robot to the grabbing zone based on the calibrated homography transformation. Efforts have been focused on the field of machine vision–based feature extraction of the chip pins and the holes on the printed circuit board. The correspondence of each other is determined by the position of the chip pins and the printed circuit board circuit pattern. The image acquisition is achieved directly online in real time. The image analysis algorithm must be sufficiently fast to follow the production rate. In order to compensate for the uncertainty of the light-emitting diode chip mounting process, a visual feedback strategy in conjunction with an uncertainty compensation strategy is employed. Results: Finally, the light-emitting diode chip was automatically grabbed and accurately placed at the desired positions. Conclusion: On-line and off-line experiments were conducted to investigate the performance of the vision system with respect to detecting and mounting light-emitting diode chips.


2019 ◽  
Vol 97 (2) ◽  
pp. 490-496
Author(s):  
Scott L. Wallen ◽  
Jaspreet Dhau ◽  
Robert Green ◽  
Laura B. Wemple ◽  
Troy Kelly ◽  
...  

Author(s):  
R N Sonawane ◽  
A S Ghule ◽  
A P Bowlekar ◽  
A H Zakane

The temperature and humidity monitoring system was developed using various components viz., Arduino Uno, DHT11 sensor, universal serial bus (USB) type B cable, adaptor, DC power jack, 9-V battery connector, 9-V DC battery, resistor, liquid-crystal display (LCD) screen, trimmer potentiometer, light-emitting diode (LED) bulbs, jumper wires, micro secure digital (SD) card module, printed circuit board (PCB), etc. The field testing of the developed temperature and humidity monitoring system was carried out at various locations of the college campus. It was observed that the system worked between the percent variation of 0–8.00% for temperature and 0–5.97% for humidity. The developed system showed the accuracy of ±2°C for temperature and ±4% for humidity. The total cost incurred for the development of temperature and humidity monitoring system along with all accessories was ₹1625.


2022 ◽  
Vol 12 (2) ◽  
pp. 640
Author(s):  
Cher-Ming Tan ◽  
Hsiao-Hi Chen ◽  
Jing-Ping Wu ◽  
Vivek Sangwan ◽  
Kun-Yen Tsai ◽  
...  

A printed circuit board (PCB) is an essential element for practical circuit applications and its failure can inflict large financial costs and even safety concerns, especially if the PCB failure occurs prematurely and unexpectedly. Understanding the failure modes and even the failure mechanisms of a PCB failure are not sufficient to ensure the same failure will not occur again in subsequent operations with different batches of PCBs. The identification of the root cause is crucial to prevent the reoccurrence of the same failure. In this work, a step-by-step approach from customer returned and inventory reproduced boards to the root cause identification is described for an actual industry case where the failure is a PCB burn-out. The failure mechanism is found to be a conductive anodic filament (CAF) even though the PCB is CAF-resistant. The root cause is due to PCB de-penalization. A reliability verification to assure the effectiveness of the corrective action according to the identified root cause is shown to complete the case study. This work shows that a CAF-resistant PCB does not necessarily guarantee no CAF and PCB processes can render its CAF resistance ineffective.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


2021 ◽  
Author(s):  
Carles Ribas Tugores ◽  
Gerald Birngruber ◽  
Jürgen Fluch ◽  
Angelika Swatek ◽  
Gerald Schweiger

Sign in / Sign up

Export Citation Format

Share Document