Magnetic Head Shorting Failure Analysis

Author(s):  
Liang Hong ◽  
Jia Li ◽  
Haifeng Wang

Abstract This paper provides an innovative root cause failure analysis method that combines multiple failure analysis (FA) techniques to narrow down and expose the shorting location and allow the material analysis of the shorting defect. It begins with a basic electrical testing to narrow down shorting metal layers, then utilizing mechanical lapping to expose over coat layers. This is followed by optical beam induced resistance change imaging to further narrow down the shorting location. Scanning electron microscopy and optical imaging are used together with focused ion beam milling to slice and view through the potential shorting area until the shorting defect is exposed. Finally, transmission electron microscopy (TEM) sample is prepared, and TEM analysis is carried out to pin point the root cause of the shorting. This method has been demonstrated successfully on Western Digital inter-metal layers shorting FA.

Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
H.J. Ryu ◽  
A.B. Shah ◽  
Y. Wang ◽  
W.-H. Chuang ◽  
T. Tong

Abstract When failure analysis is performed on a circuit composed of FinFETs, the degree of defect isolation, in some cases, requires isolation to the fin level inside the problematic FinFET for complete understanding of root cause. This work shows successful application of electron beam alteration of current flow combined with nanoprobing for precise isolation of a defect down to fin level. To understand the mechanism of the leakage, transmission electron microscopy (TEM) slice was made along the leaky drain contact (perpendicular to fin direction) by focused ion beam thinning and lift-out. TEM image shows contact and fin. Stacking fault was found in the body of the silicon fin highlighted by the technique described in this paper.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


2011 ◽  
Vol 17 (S2) ◽  
pp. 1762-1763 ◽  
Author(s):  
M Wright ◽  
R Christoffersen ◽  
Z Rahman ◽  
S McDanels

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


1999 ◽  
Vol 5 (S2) ◽  
pp. 900-901
Author(s):  
R. Pantel ◽  
G. Mascarin ◽  
G. Auvert

1. Introduction.With continuing reductions in semiconductor device dimensions high spatial resolution physical and chemical analysis techniques will be more and more required for defect analysis and process development in the microelectronics field. Transmission Electron Microscopy (TEM) analysis is now extensively used thanks to the fast Focused Ion Beam (FIB) specimen preparation technique which has furthered its development. Recently, we have shown the advantages of adding Electron Energy Loss Spectroscopy (EELS) to FIB-TEM analysis for semiconductor process characterization. In this paper we extend the EELS technique using FIB sample preparation to Energy Filtering TEM (EFTEM) observations. The EFTEM analysis allows high-resolution compositional mapping using spectroscopic imaging of core level ionization edges3. We show some applications of FIB-EFTEM to defect analysis and process development.2. Experimental details.The FIB system is a MICRION model 9500 EX using a gallium ion beam of 50 keV maximum energy with a 5 nm minimum spot diameter.


Author(s):  
Hung Chin Chen ◽  
Chih Yang Tsai ◽  
Shih Yuan Liu ◽  
Yu Pang Chang ◽  
Jian Chang Lin

Abstract Fault isolation is the most important step for Failure Analysis (FA), and it is closely linked with the success rate of failure mechanism finding. In this paper, we will introduce a case that hard to debug with traditional FA skills. In order to find out its root cause, several advanced techniques such as layout tracing, circuit edit and Infrared Ray–Optical Beam Induced Resistance Change (IR-OBIRCH) analysis had been applied. The circuit edit was performed following layout tracing for depositing probing pads by Focused Ion Beam (FIB). Then, IR-OBIRCH analysis with biasing on the two FIB deposited probing pads and a failure location was detected. Finally, the root cause of inter- metal layer bridge was found in subsequent physical failure analysis.


Author(s):  
Max L. Lifson ◽  
Carla M. Chapman ◽  
D. Philip Pokrinchak ◽  
Phyllis J. Campbell ◽  
Greg S. Chrisman ◽  
...  

Abstract Plan view TEM imaging is a powerful technique for failure analysis and semiconductor process characterization. Sample preparation for near-surface defects requires additional care, as the surface of the sample needs to be protected to avoid unintentionally induced damage. This paper demonstrates a straightforward method to create plan view samples in a dual beam focused ion beam (FIB) for TEM studies of near-surface defects, such as misfit dislocations in heteroepitaxial growths. Results show that misfit dislocations are easily imaged in bright-field TEM and STEM for silicon-germanium epitaxial growth. Since FIB tools are ubiquitous in semiconductor failure analysis labs today, the plan view method presented provides a quick to implement, fast, consistent, and straightforward method of generating samples for TEM analysis. While this technique has been optimized for near-surface defects, it can be used with any application requiring plan view TEM analysis.


Sign in / Sign up

Export Citation Format

Share Document