defect isolation
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Yunfei Wang ◽  
Hyuk Ju Ryu ◽  
Tom Tong

Abstract In this paper, we present case studies of localizing resistive open defects using various FA techniques, including two-terminal IV, two-terminal Electron-Beam Absorbed Current (EBAC), Electron Beam Induced Resistance Change (EBIRCh), Pulsed IV, Capacitance-Voltage (CV) and Scanning Capacitance Microscopy (SCM). The advantage and limitation of each technique will also be discussed.


2021 ◽  
Vol 119 ◽  
pp. 114069
Author(s):  
M.H. Thor ◽  
S.H. Goh ◽  
B.L. Yeoh ◽  
Y.H. Chan

Author(s):  
Neel Leslie ◽  
Brian Lai ◽  
Heebeom Lee ◽  
Mingi Lee ◽  
Christopher H. Kang ◽  
...  

Abstract Correlation across applications and imaging platforms is essential and brings increased insurance for fault isolation in advance of destructive imaging. This paper demonstrates an approach for a detailed advanced packaging defect isolation and analysis workflow. To determine the effectiveness of the proposed workflow, a 28nm flip-chip was used as a test vehicle. By using this workflow, the yield in determining the fault location has increased from 60% to over 85%. To further improve the result, a surface charging mitigation scheme was used and the resulting measured correlative offset between the two systems was found to be less than 10um. This creates novel opportunities in reducing the size of the cross-section and increasing the overall throughput to find the defect, with high confidence. This workflow creates unique abilities in fault localization and analysis as it can detect both opens and shorts between the different techniques that are employed.


Author(s):  
S.L. Ting ◽  
P.K. Tan ◽  
Y.L. Pan ◽  
H.H.W. Thoungh ◽  
S.Y. Thum ◽  
...  

Abstract Gate oxide breakdown has always been a critical reliability issue in Complementary Metal-Oxide-Silicon (CMOS) devices. Pinhole analysis is one of the commonly use failure analysis (FA) technique to analysis Gate oxide breakdown issue. However, in order to have a better understanding of the root cause and mechanism, a defect physically without any damaged or chemical attacked is required by the customer and process/module departments. In other words, it is crucial to have Transmission Electron Microscopy (TEM) analysis at the exact Gate oxide breakdown point. This is because TEM analysis provides details of physical evidence and insights to the root cause of the gate oxide failures. It is challenging to locate the site for TEM analysis in cases when poly gate layout is of a complex structure rather than a single line. In this paper, we developed and demonstrated the use of cross-sectional Scanning Electron Microscope (XSEM) passive voltage contrast (PVC) to isolate the defective leaky Polysilicon (PC) Gate and subsequently prepared TEM lamella in a perpendicular direction from the post-XSEM PVC sample. This technique provides an alternative approach to identify defective leaky polysilicon Gate for subsequent TEM analysis.


Author(s):  
H.J. Ryu ◽  
A.B. Shah ◽  
Y. Wang ◽  
W.-H. Chuang ◽  
T. Tong

Abstract When failure analysis is performed on a circuit composed of FinFETs, the degree of defect isolation, in some cases, requires isolation to the fin level inside the problematic FinFET for complete understanding of root cause. This work shows successful application of electron beam alteration of current flow combined with nanoprobing for precise isolation of a defect down to fin level. To understand the mechanism of the leakage, transmission electron microscopy (TEM) slice was made along the leaky drain contact (perpendicular to fin direction) by focused ion beam thinning and lift-out. TEM image shows contact and fin. Stacking fault was found in the body of the silicon fin highlighted by the technique described in this paper.


Author(s):  
S.H. Goh ◽  
Edmund C Manlangit ◽  
Edy Susanto ◽  
B.L. Yeoh ◽  
Hu Hao ◽  
...  

Abstract Photon Emission Microscopy is the most widely used mainstream defect isolation technique in failure analysis labs. It is easy to perform and has a fast turnaround time for results. However, interpreting a photon emission micrograph to postulate the suspected defect site accurately is challenging when there are multiple abnormal hotspots and driving nets involved. This is commonly encountered in dynamic emission micrographs that are caused by open defects in digital logic. This paper presents a methodology incorporating layout-aware trace analysis and post schematic extraction with test bench analysis to enhance the diagnostic resolution on the suspected defective net(s).


Author(s):  
Keonil Kim ◽  
Sungjin Kim ◽  
Kunjae Lee ◽  
Kyeongju Jin ◽  
Yunwoo Lee ◽  
...  

Abstract In most of the non-destructive electrical fault isolation cases, techniques such as DLS, Photon Emission, LIT, OBIRCH indicate a fault location directly. But relying on just one of these techniques for marginal failure mechanism is not enough for better fault localization. When Failure Analysis (FA) engineers encounter high NDF (No Defect Found) rates, by using only one of the techniques, they may need to consider the relationship between the responded locations by different techniques and fail phenomenon for better defect isolation. This paper talks about how a responded DLS location does not always indicate a fault location and how LVP data collected using DLS location can pin point the real defect location.


Sign in / Sign up

Export Citation Format

Share Document