Non-Destructive Visualization of Bond Pad Defects using Acoustic Microscopy in the GHz-Band

Author(s):  
Sebastian Brand ◽  
Michael Kögel ◽  
Frank Altmann ◽  
Stefan Oberhoff ◽  
Michael Wiedenmann ◽  
...  

Abstract GHz scanning acoustic microscopy (GHz-SAM) was successfully applied for non-destructive evaluation of the integrity of back end of line (BEOL) stacks located underneath wire-bond pads. The current study investigated two sample types of different IC processes. Realistic bonding defects were artificially induced into samples and the sensitivity of the acoustic GHz-microscope towards defects in BEOL systems was studied. Due to the low penetration depth in the acoustic GHz regime, a specific sample preparation was conducted in order to provide access to the region of interest. However, the preparation stopped several microns above the interfaces of interest, thus avoiding preparation artifacts in the critical region. Cratering related cracks in the bond pads have been imaged clearly by GHz-SAM. The morphology of the visualized defects corresponded well with the results obtained by a chemical cratering test. Moreover, delamination defects at the interface between ball and pad metallization were detected and successfully identified. The current paper demonstrates non-destructive inspection for bond-pad cratering and ball-bond delamination using highly focused acoustic waves in the GHz-band and thus illustrates the analysis of micron-sized defects in BEOL layer structures that are related to wire bonding or test needle imprints.

Author(s):  
Dat Nguyen ◽  
Sagar Karki

Abstract Lifted bond balls in Integrated Circuit (IC) have numerous failure mechanisms. A simple external curve can confirm the open, and with package decapsulation, lifted balls can be readily observed. However, the exact cause can be difficult to identify. Most often, a cross section through the balls was performed, but it is far from being able to reveal the reason for lifted bond balls. A comprehensive FA approach is needed. Performing failure analysis through the back side of the die using Scanning Acoustic Microscopy (C-SAM) and Infra Red (IR) inspection helps to observe the conditions of the bond pads. Pulling the die from the mold compound can provide a pristine view of the bond ball-bond pad interface. This allows the detection of contaminants, both organic and inorganic, which cross sections cannot provide.


1989 ◽  
pp. 747-752 ◽  
Author(s):  
U. Stelwagen ◽  
P.P.J. Ramaekers ◽  
P.P. van't Veen ◽  
L.F. van der Wal

2019 ◽  
Vol 91 (10) ◽  
pp. 7-15
Author(s):  
Tomasz Piwowarczyk ◽  
Marcin Korzeniowski ◽  
Dawid Majewski

This article explores the possibilities of using non-destructive ultrasonic techniques to analyze the quality of lapped braze-welded joints. The tests were performed for 4 material groups (DC03+ZE steel and X5CrNi18-19 steel, aluminum alloys AW-5754 and AW-6061, titanium Grade 2 and copper Cu-ETP). As part of the work, additional materials and joint processes and its parameters were selected (TIG, MIG, laser). The quality of joints was monitored using scanning acoustic microscopy. Based on the A-scan andC-scan images, potential joints imperfections were determined. The possibilities of using advanced ultrasonic techniques to analyze the quality of braze joints was assessed.


2020 ◽  
Vol 6 ◽  
pp. 100035 ◽  
Author(s):  
L. Pitta Bauermann ◽  
L.V. Mesquita ◽  
C. Bischoff ◽  
M. Drews ◽  
O. Fitz ◽  
...  

Author(s):  
Ramesh Varma ◽  
Jeffrey Bartolovitch ◽  
Victor Brzozowski ◽  
Carl Sokolowski

Abstract This paper reports using Scanning Acoustic Microscopy for solder joint failure analysis and process and design improvements. There are reliability concerns associated with solder voids or non-wetting of the solder to the bond pads which is particularly important for higher electrical power or temperature applications. Defects in solder can also occur and grow during operation and thermal cycling. Sonoscan is an attractive non-destructive test to characterize solder joints and is often used to study the growth of defects during life test simulations. X-ray imaging cannot identify very small defects, particularly non-wetting and delamination because of poor resolution. The instrument used in this study was a CSAM (C-Mode Scanning Acoustic Microscopy) operating in reflection mode at 30-100 MHz. We have identified voids inherent in the solder layer as well as delamination at the package to solder and solder to heat-sink interfaces. C-SAM results confirmed that the delamination was caused by CTE mismatch of the materials as well as the mechanical stresses caused by higher level package integration and module assemblies. Thermal cycling studies have shown that typically the voids do not grow whereas delamination does. These results were used to improve thermal heat-sinking and product reliability by minimizing defects in solder joint by changes in process and mechanical designs.


Sign in / Sign up

Export Citation Format

Share Document