Scanning Acoustic Microscopy for Solder Joint Failure Analysis and Design Improvements
Abstract This paper reports using Scanning Acoustic Microscopy for solder joint failure analysis and process and design improvements. There are reliability concerns associated with solder voids or non-wetting of the solder to the bond pads which is particularly important for higher electrical power or temperature applications. Defects in solder can also occur and grow during operation and thermal cycling. Sonoscan is an attractive non-destructive test to characterize solder joints and is often used to study the growth of defects during life test simulations. X-ray imaging cannot identify very small defects, particularly non-wetting and delamination because of poor resolution. The instrument used in this study was a CSAM (C-Mode Scanning Acoustic Microscopy) operating in reflection mode at 30-100 MHz. We have identified voids inherent in the solder layer as well as delamination at the package to solder and solder to heat-sink interfaces. C-SAM results confirmed that the delamination was caused by CTE mismatch of the materials as well as the mechanical stresses caused by higher level package integration and module assemblies. Thermal cycling studies have shown that typically the voids do not grow whereas delamination does. These results were used to improve thermal heat-sinking and product reliability by minimizing defects in solder joint by changes in process and mechanical designs.