scholarly journals A Novel Sample Preparation Method for Frontside Inspection of GaN Devices after Backside Analysis

Author(s):  
Tony Colpaert ◽  
Stefaan Verleye

Abstract Frontside die inspection by Scanning Electron Microscopy (SEM) is critical to investigate failures that appear dispersed over the GaN die surface and that will be very difficult to localize by the typical Focus Ion Beam (FIB) or Transmission Electron Microscopy (TEM) analysis. Frontside sample preparation is; however, extremely challenging if the device was already subjected to sample preparation for backside Photo Emission Microscopy (PEM). In this paper, a novel sample preparation method is presented where all front side layers are removed and only the 5μm GaN die is left for inspection.

Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


2000 ◽  
Vol 8 (5) ◽  
pp. 14-19 ◽  
Author(s):  
Wayne D. Kaplan ◽  
Efrat Raz ◽  
Colin Smith

The rising demand in the semiconductor industry for higher spatial resolution in the analysis of device defects has focused attention on the use of transmission electron microscopy (TEM). However, conventional TEM sample preparation can be difficult and time-consuming, and, depending on the operator, may result in a low yield of quality specimens. One solution to this problem is the use of focused ion beam (FIB) milling for the final stage of TEM sample preparation. However, specimens have to be mechanically thinned prior to FIB and the need to characterize specific devices requires a pre-FIB preparation method that can target specific features on the wafer. We will discuss an innovative and automated solution that isolates specific devices and prepares TEM specimens for subsequent FIB thinning. The complete pre-FIB preparation takes less than 30 minutes and yields a sample in which the targeted feature is positioned a specific distance from the sample edge, thereby minimizing final FIB milling time. The output specimen is automatically packaged for FIB milling and TEM analysis. We also present drawings of the process flow and examples showing TEM results from tungsten filled vias.


1997 ◽  
Vol 480 ◽  
Author(s):  
K. Tsujimoto ◽  
S. Tsuji ◽  
H. Takatsuji ◽  
K. Kuroda ◽  
H. Saka ◽  
...  

AbstractA rapid and precise sample preparation method using focused ion beam (FIB) etching was developed for cross-sectional transmission electron microscopy (X-TEM) analysis of a thin-film transistor (TFT) fabricated on a glass substrate. Gallium (Ga) ions accelerated at 30 kV and at various incident beam angles were applied during FIB etching to create a uniform thin wall. We successfully prepared X-TEM specimens of long and fragile aluminum (Al) whiskers formed on thin Al films in TFT metallization, where a strong charge is built up during FIB etching. The effect of ion-beam-assisted tungsten deposition prior to FIB etching is discussed. A whisker having a length not exceeding approximately 10 #x00B5;m can be successfully etched to a thickness of 200 nm while keeping its original shape. The performance of this technique is demonstrated in applications to etching at other fragile locations related to TFTs.


Applied Nano ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 289-302
Author(s):  
Adrianna Glinkowska Mares ◽  
Natalia Feiner-Gracia ◽  
Yolanda Muela ◽  
Gema Martínez ◽  
Lidia Delgado ◽  
...  

Organ-on-a-chip technology is a 3D cell culture breakthrough of the last decade. This rapidly developing field of bioengineering intertwined with microfluidics provides new insights into disease development and preclinical drug screening. So far, optical and fluorescence microscopy are the most widely used methods to monitor and extract information from these models. Meanwhile transmission electron microscopy (TEM), despite its wide use for the characterization of nanomaterials and biological samples, remains unexplored in this area. In our work we propose a TEM sample preparation method, that allows to process a microfluidic chip without its prior deconstruction, into TEM-compatible specimens. We demonstrated preparation of tumor blood vessel-on-a-chip model and consecutive steps to preserve the endothelial cells lining microfluidic channel, for the chip’s further transformation into ultrathin sections. This approach allowed us to obtain cross-sections of the microchannel with cells cultured inside, and to observe cell adaptation to the channel geometry, as well as the characteristic for endothelial cells tight junctions. The proposed sample preparation method facilitates the electron microscopy ultrastructural characterization of biological samples cultured in organ-on-a-chip device.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Yu-Hao Deng

Abstract Sample preparation is significantly important to the high-resolution transmission electron microscopy (HRTEM) characterization of nanomaterials. However, many general organic solvents can dissolve the necessary organic polymer support layer in TEM grid, which causes it difficult to obtain high-quality samples of oil-soluble nanomaterials. In this study, a new sample preparation method for oil-soluble nanomaterials has been developed by using the sublimable material as a transition layer. Experiments also show that there is no damage to TEM grids and high-quality HRTEM images can be obtained via this method. This approach paves the way to applicable HRTEM sample preparation of oil-soluble nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document