Regulating Transportation in New Nonattainment Areas Under the 8-Hour Ozone Standard

Author(s):  
Jonathan Makler ◽  
Arnold M. Howitt

The U.S. Environmental Protection Agency promulgated a new National Ambient Air Quality Standard for ground-level ozone in July 1997, beginning a process that (after some litigation-induced delays) will soon lead to the designation of new nonattainment areas that will be subject to the transportation conformity regulations. The history of the 8-h ozone standard is reviewed, the process of designating the boundaries of new nonattainment areas is described, and the types and geographic locations of the new nonattainment areas are suggested. Drawing on previous research, the institutional challenges that will face the new and expanded nonattainment areas are explored. The experiences of Georgia, North Carolina, and Oklahoma in preparing for implementation of the new standard are presented. Finally, several recommendations for transportation agencies involved in implementing the new standards are given.

2012 ◽  
Vol 47 (1) ◽  
pp. 83-88
Author(s):  
BA Begum ◽  
G Saroar ◽  
M Nasiruddin ◽  
SK Biswas

The distribution of the ground-level ozone concentration in Chittagong city was continuously monitored at air monitoring station in Chittagong city during period of December 2006 to December 2007. The results of this study have revealed that the ground-level ozone concentration in Chittagong city varied from season to season. The highest ground-level ozone concentration was found in winter. The groundlevel ozone concentration has also a clear diurnal cycle - with higher values in the daytime and notably becomes zero at night depending on season. Meteorological conditions are known to influence the formation and dispersion of ground-level ozone concentration. At temperature lower than 20°C, the concentration of ozone becomes high where as at high temperature (> 30°C), the concentration becomes low. It has also been found that at low wind speed, the ozone concentration is high and at high wind speed, the concentration becomes low due to dispersion. The results also establish that the during the study periods, the ozone concentration was below the Bangladesh National Ambient Air Quality Standard (BNAAQS) of 80 ppb (annual average). DOI: http://dx.doi.org/10.3329/bjsir.v47i1.10729 Bangladesh J. Sci. Ind. Res. 47(1), 83-88, 2012


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Marc L. Mansfield ◽  
Seth N. Lyman

High concentrations of ground-level ozone have been observed during wintertime in the Uinta Basin of western Utah, USA, beginning in 2010. We analyze existing ozone and ozone precursor concentration data from 38 sites over 11 winter seasons and conclude that there has been a statistically significant (p < 0.02) decline in ozone concentration over the previous decade. Daily exceedances of the National Ambient Air Quality Standard for ozone (70 ppb) have been trending downward at the rate of nearly four per year. Ozone and NOx concentrations have been trending downward at the rates of about 3 and 0.3 ppb per year, respectively. Concentrations of organics in 2018 were at about 30% of their values in 2012 or 2013. Several markers, annual ozone exceedance counts and median ozone and NOx concentrations, were at their largest values in the period 2010 to 2013 and have never recovered since then. We attribute the decline to (1) weakening global demand for oil and natural gas and (2) more stringent pollution regulations and controls, both of which have occurred over the previous decade. We also see evidence of ozone titration when snow cover is absent.


Author(s):  
Ekaterina Galkina Cleary ◽  
Manuel Cifuentes ◽  
Georges Grinstein ◽  
Doug Brugge ◽  
Thomas B. Shea

Increasing evidence points to an association of airborne pollutant exposure with respiratory, cardiovascular, and neurological pathology. We examined whether or not ground-level ozone or fine particulate matter ≤ 2.5 μm in diameter (PM2.5) was associated with accelerated cognitive decline. Using repeated measures mixed regression modeling, we analyzed cognitive performance of a geographically diverse sampling of individuals from the National Alzheimer’s Coordinating Center between 2004–2008. Ambient air concentrations of ozone and PM2.5 were established using a space-time Hierarchical Bayesian Model that statistically merged air monitor data and modeled air quality estimates. We then compared the ambient regional concentrations of ozone and PM2.5 with the rate of cognitive decline in residents within those regions. Increased levels of ozone correlated with an increased rate of cognitive decline, following adjustment for key individual and community-level risk factors. Furthermore, individuals harboring one or more APOE4 alleles exhibited a faster rate of cognitive decline. The deleterious association of ozone was confined to individuals with normal cognition who eventually became cognitively impaired as opposed to those who entered the study with baseline impairment. In contrast to ozone, we did not observe any correlation between ambient PM2.5 and cognitive decline at regulatory limits set by the Environmental Protection Agency. Our findings suggest that prolonged exposure to ground-level ozone may accelerate cognitive decline during the initial stages of dementia development.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 625-633 ◽  
Author(s):  
G A Klouda ◽  
L A Currie ◽  
D J Donahue ◽  
A J T Jull ◽  
M H Naylor

Atmospheric gas samples (0.1m3) were collected at ground level during January/February 1984 in Las Vegas, Nevada for 14C/13C accelerator mass spectrometry and total abundance measurements of CO and CH4. During winter months in this locale, CO concentrations can occur at 10 to 100 times background, occasionally exceeding the National Ambient Air Quality Standard (NAAQS). Methane concentrations show a slight enhancement (∼24%) above the background (non-urban troposphere) level. A comparison of CO and CH4 concentrations shows a good linear correlation which may indicate a common source. Preliminary 14C/13C results of the two species suggest that fossil emissions are the predominant source of excess CO and CH4 in the samples taken. Estimates of anthropogenic CO and CH4 are important for source apportionment of combustion emissions. In addition, this information is valuable for understanding the global CO and CH4 cycles and, therefore, human impact on climate and the stratospheric ozone layer.


2013 ◽  
Vol 807-809 ◽  
pp. 20-23 ◽  
Author(s):  
Tao Sheng ◽  
Jian Wu Shi ◽  
Sen Lin Tian ◽  
Li Mei Bi ◽  
Hao Deng ◽  
...  

According to the information of air quality which published by the urban air quality real-time publishing platform, the concentration characteristics of PM10 and PM2.5 were studied in Kunming (KM), Changsha (CS), Hangzhou (HZ), Shanghai (SH), Harbin (HEB), Beijing (BJ), Wuhan (WH) and Guangzhou (GZ). The results show that the concentrations of PM10 and PM2.5 exceeded the Ambient Air Quality Standard (GB3095-2012) in varying degrees in March, 2013. The concentrations of PM10 in Wuhan is the highest, reached 164μg/m3, exceeded the standard by 9.3%; the concentrations of PM2.5 is much higher in Wuhan, Changsha and Beijing, the average concentrations were 96μg/m3, 103μg/m3 and 110μg/m3, exceeded the standard by 28.0%, 37.3% and 46.7% respectively. The correlation of PM10 with PM2.5 in most of these cities was good in March. The correlation analysis of pollutant with meteorological factor in Hangzhou, Shanghai, Beijing and Guangzhou was also studied, the results show that the concentrations of PM10 and PM2.5 are weakly positive correlation with temperature in the four cities, negative correlation with relative humidity without Beijing, and negative correlation with wind speed.


Sign in / Sign up

Export Citation Format

Share Document