Recent Experience with High-Performance Concrete Jointless Bridges in Tennessee

2003 ◽  
Vol 1845 (1) ◽  
pp. 104-114
Author(s):  
David J. Knickerbocker ◽  
Prodyot K. Basu ◽  
Mark A. Holloran ◽  
Edward P. Wasserman

Experimental and analytical studies of two high-performance concrete (HPC) jointless bridges with integral abutments built in Tennessee as part of the FHWA’s nationwide initiative to implement HPC in bridge structures are presented. Performance of the two bridges is observed through all stages of construction and service to date, via material testing, bridge instrumentation for both short- and long-term performance monitoring, and live-load testing. The up-to-date observed performance of the bridges reveals the success of such bridge construction. Local contractors were found to be capable of producing concrete to meet increased requirements in strength and durability parameters. In addition, new insights were derived about HPC behavior in such applications, identifying the areas requiring updating of current practice. Load test data revealed that load distribution among the girders is in marked difference from codes of practice. Thermal response of the bridges indicated longitudinal flexibility offered by the jointless construction.

Author(s):  
Brent Phares ◽  
Yoon-Si Lee ◽  
Travis K. Hosteng ◽  
Jim Nelson

This paper presents a laboratory investigation on the performance of grouted rebar couplers with the connection details similar to those utilized on the precast concrete elements of the Keg Creek Bridge on US 6 in Iowa. The testing program consisted of a series of static load tests, a fatigue test, and evaluation of the chloride penetration resistance of laboratory specimens. The goal of this testing was to evaluate the ability of the grouted rebar couplers to develop flexural capacity at the joint between the precast elements as well as the durability of the connection. For structural load testing, seven full-scale specimens, each with #14 epoxy-coated rebars spliced by epoxy-coated grouted couplers, were fabricated and tested in three different loading cases: four-point bending, axial tension plus bending, and a cyclic test of the system in bending. The static load testing demonstrated that the applied axial load had a minimal effect on the formation of cracks and overall performance of the connection. When ultra-high performance concrete was used as a bedding grout, the initiation of crack was slightly delayed but no considerable improvement was observed in the magnitude of the crack width during loading or the crack closure on unloading. The results of the seventh specimen, tested in fatigue to 1 million cycles, showed little global displacement and crack width throughout the test, neither of which expanded measurably. No evidence of moisture or chloride penetration was detected at the grouted joint during the 6-month monitoring.


2003 ◽  
Vol 1845 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Yumin Yang ◽  
John J. Myers

For its significant economical savings and greater design flexibility, high-performance concrete (HPC) is becoming more widely used in highway bridge structures. High-performance bridges with HPC and large-diameter prestressed strands are becoming attractive to designers. Bridge A6130 is the first fully HPC superstructure bridge in Missouri. The bridge has HPC cast-in-place deck and high-strength concrete girders reinforced with 15.2-mm (0.6-in.) diameter strands. The bridge was instrumented with embedded strain gauges and thermocouples to monitor the early-age and later-age behavior of the structures from construction through service. To investigate the overall behavior of the bridge under live load, a static live-load test was developed and carried out. During the live-load test, 64 embedded vibrating wire strain gauges and 14 embedded electrical-resistance strain gauges were used to acquire the changing strain rate in the bridge caused by the varying live-load conditions. Girder deflections and rotations were also recorded with external sensors and a data acquisition system. Based on the test results, the load distribution to the girders was studied. The AASHTO specifications live-load distribution factor recommended for design was compared with the measured value and found to be overly conservative. The AASHTO load and resistance factor design live-load distribution factors recommended for design were found to be comparable to measured values. Two finite element models were developed with ANSYS and compared with measured values to investigate the continuity level of the Missouri Department of Transportation interior bent detail.


Author(s):  
Turki S. Alahmari ◽  
Christopher Kennedy ◽  
Brad D. Weldon ◽  
David V. Jáuregui ◽  
Michael J. McGinnis ◽  
...  

<p>Ultra-high performance concrete (UHPC) provides superior properties compared to conventional concretes. However, due to the high cost of materials and lack of familiarity and design codes, the use of UHPC is still limited in structural applications. Research at New Mexico State University (NMSU) has developed nonproprietary UHPC using materials local to New Mexico, USA. The mixture proportions reduce costs while improving sustainability and maintaining the advanced mechanical and durability properties characteristic of UHPC. The superstructure of Bridge 9706, a two-span bridge near Anthony, New Mexico, was recently constructed to incorporate one span using nonproprietary UHPC and one span using high-performance concrete (HPC). To investigate the behavior of the bridge, load tests were conducted. External sensors were attached to the girders of both spans to measure strains during testing. Additionally, digital image correlation (DIC) was used on the sides of the exterior girders to measure deflections and strains. Loaded trucks were used to apply a load to the bridge through different load paths and configurations. Results of the load tests are presented and the behavior of the UHPC and HPC span under similar load conditions are compared.</p>


2021 ◽  
Vol 322 ◽  
pp. 157-162
Author(s):  
Milan Holý ◽  
David Čítek ◽  
Petr Tej ◽  
Lukáš Vráblík

This article presents the results of the experimental development of a unique bridge system consisting of timber beams connected with bridge deck segments made of Ultra-High Performance Concrete (UHPC). The article deals with the production of a full-scale prototype of the timber-concrete composite structure and with an execution of a subsequent load test. The test structure was 3.30 m wide and 10.24 m long and was designed as two beams made of glue laminated timber connected with subtle bridge deck segments with a thickness only 60 mm and with a typical length of 1.50 m. The aim of the production of the test structure was to check some production details and procedures and subsequently to verify the behavior of the composite structure under load by the load test. The load test was performed with a theoretical span of 9.50 m as a four-point bending test to failure. After the overall load test was done, some bridge deck segments were cut from the structure and a load test of the bridge deck in transversal direction were executed to verify the behavior and the load-bearing capacity of the bridge deck segments made of UHPC.


2014 ◽  
Vol 578-579 ◽  
pp. 776-778
Author(s):  
Petr Tej ◽  
Jiří Kolísko ◽  
Petr Bouška ◽  
Miroslav Vokáč ◽  
Jindřich Čech

This paper focuses on research into prestressed I-beams made of ultra-high-performance concrete, which are designed to be structural elements in small and medium span railway bridges. Prestressed concrete I-beams are designed with ten prestressing cables in the bottom flange. The prestressed beams are laid close together in the actual structure with panels inserted between them. The entire structure will subsequently become monolithic. At the present time, I-beams made of rolled steel are commonly used as structural elements in this type of structure. The advantage of these types of structures lies in their having a low construction height. This paper presents a computer and experimental analysis of the loading of UHPC prestressed I-beams. For the purpose of the experiments, several specimens of 7 m span were made. The specimens were subsequently tested in the laboratory in four-point bending tests. The paper presents the process and results of the experiments. Simultaneously with the experiments, computer analyses were created in which optimization of the material and geometric parameters of the beams were carried out. The paper demonstrates the correspondence of the experimental and computer-simulated load test results.


Author(s):  
Bruno Briseghella ◽  
Zhen-Guo Yang ◽  
Jun-Qing Xue ◽  
Jian-hui Lin ◽  
Fu-yun Huang

<p>The link slab could be applied to the abutment-superstructure connections to eliminate deck joints to form a link slab-abutment backwall (LS-AB) system in jointless bridges. However, due to the rotation and longitudinal deformation of girder ends, the reinforced concrete LS-AB system may crack. In order to improve the crack resistance of the LS-AB system, the ultra-high performance concrete (UHPC) could be used. The finite element model was built by ABAQUS to investigate the flexural performance of the UHPC LS-AB system. The results indicated that UHPC could improve the ultimate load, bending stiffness and crack resistance of the LS-AB system. The cracks mainly appeared on the link slab under bending. With an increase in the ratio of rubber sheet length to span, the displacement corresponding to initial concrete cracks increase. The bending stiffness of the UHPC LS-AB system is mainly influenced by the material and rubber sheet length.</p>


2021 ◽  
Vol 6 (9) ◽  
pp. 121
Author(s):  
Haena Kim ◽  
Byungkyu Moon ◽  
Xinyu Hu ◽  
Hosin (David) Lee ◽  
Gum-Sung Ryu ◽  
...  

The application of Ultra-High-Performance Concrete (UHPC) materials in rehabilitating bridges and constructing primary bridge components is increasing rapidly across the world because of their superior strength and durability characteristics when compared to regular concretes. However, there have been few new bridges constructed using UHPC materials with regular formworks, ready-mix trucks, and construction equipment. This paper presents a comprehensive report encompassing the design, construction, and performance monitoring of a new bridge constructed in Iowa using a unique UHPC technology that includes steel fibers of two different lengths embedded in the concrete. By using optimized lengths of steel fibers, both the tensile strength and the toughness were increased. The UHPC material was produced with local cement and aggregates in the US using typical ready-mix concrete equipment. This paper discusses the experience gained from the design and construction process including mix design, batching, delivery of steel fibers to the ready-mix concrete batch unit, and post-tensioning of precast slabs at the jobsite. For four years after construction, the joints of the bridge decks were monitored using strain sensors mounted on both sides of the deck joints. The strain values were quite similar between the two sides of each joint, indicating a good load transfer between precast bridge girders. A bridge was successfully constructed using a unique UHPC technology incorporating two different lengths of steel fibers and utilizing local cement and aggregates and a ready-mix truck, and has been performing satisfactorily with a good load transfer across post-tensioned precast girder joints.


2015 ◽  
Vol 1095 ◽  
pp. 569-572 ◽  
Author(s):  
Petr Tej ◽  
Jiří Kolísko ◽  
Petr Bouška ◽  
Tomáš Bittner ◽  
Veronika Mušutová

This paper focuses on the research carried out on thin plates made of white ultra-high performance concrete reinforced by PVA fibers and 2D textile glass reinforcement. These boards should be used for facades or roof panels. The paper presents a computer and experimental analysis of the loading of thin UHPC plates. For the purpose of the experiments, three specimens of a size of 750 x 125 x 15 mm were made. The specimens were subsequently tested in the laboratory in four-point bending tests. The paper presents the process and results of the experiments. Simultaneously with the experiments, computer analyses were created in which optimization of the material and geometric parameters of the beams were carried out. The paper demonstrates the correspondence of the experimental and computer-simulated load test results.


2014 ◽  
Vol 587-589 ◽  
pp. 1593-1596
Author(s):  
Petr Tej ◽  
Jiří Kolísko ◽  
Petr Bouška ◽  
Miroslav Vokáč ◽  
Jindřich Čech

This paper focuses on research of prestressed I-beams made of ultra-high performance concrete (UHPC), which are designed to be structural elements in small and medium span railway bridges. Prestressed concrete I-beams are designed with ten prestressing cables in the bottom flange. The prestressed beams are laid close together in the actual structure, with panels inserted between them. The entire structure will subsequently become monolithic. At the present time, I-beams made of rolled steel are commonly used as structural elements in this type of structure. The advantage of these types of structures lies in their having low construction height. This paper presents a computer and experimental analysis of loading of UHPC prestressed I-beams. For the purpose of the experiments, three specimens of 12 m span were made. The specimens were subsequently tested in the laboratory in four-point bending tests. The paper presents the process and results of the experiments. Simultaneously with the experiments, computer analyses were created in which optimization of the material and geometric parameters of the beams were carried out. The paper demonstrates the correspondence of the experimental and computer-simulated load test results.


Sign in / Sign up

Export Citation Format

Share Document