Estimating Earthwork Volumes Through Use of Unmanned Aerial Systems

Author(s):  
Xi Wang ◽  
Zamaan Al-Shabbani ◽  
Roy Sturgill ◽  
Adam Kirk ◽  
Gabriel B. Dadi

Unmanned aerial systems (UASs) and unmanned aerial vehicles (UAVs) have become increasingly attractive for numerous surveying applications in civil engineering, agriculture, and many other fields. The unmanned systems and vehicles are capable of performing photogrammetric data acquisition with equipped digital cameras that allows for converting images to highly precise, georeferenced three-dimensional models. However, more studies are needed to demonstrate practical applications of UAS systems and UAVs on construction sites. In this project, UAS systems and UAVs and digital photogrammetry technology are introduced to estimate the earthwork volume of a highway extension project. The georeferenced images were processed by the photogrammetry software, Pix4Dmapper, which is a tool for converting images into an accurate and applicable three-dimensional point cloud model. Progress models were created over the course of several weeks. The volume of earth was computed by comparing the point cloud of the progress models after model processing. To ensure reliability, the accuracy of the UAS and UAV photogrammetry was verified by comparison with conventional ground survey methods and the results from different flights. The project presents the feasibility and effectiveness of using UAS systems and UAVs in estimating earthwork volumes on the basis of the results of an accuracy test and the efficiency of the survey.

2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2834
Author(s):  
Billur Kazaz ◽  
Subhadipto Poddar ◽  
Saeed Arabi ◽  
Michael A. Perez ◽  
Anuj Sharma ◽  
...  

Construction activities typically create large amounts of ground disturbance, which can lead to increased rates of soil erosion. Construction stormwater practices are used on active jobsites to protect downstream waterbodies from offsite sediment transport. Federal and state regulations require routine pollution prevention inspections to ensure that temporary stormwater practices are in place and performing as intended. This study addresses the existing challenges and limitations in the construction stormwater inspections and presents a unique approach for performing unmanned aerial system (UAS)-based inspections. Deep learning-based object detection principles were applied to identify and locate practices installed on active construction sites. The system integrates a post-processing stage by clustering results. The developed framework consists of data preparation with aerial inspections, model training, validation of the model, and testing for accuracy. The developed model was created from 800 aerial images and was used to detect four different types of construction stormwater practices at 100% accuracy on the Mean Average Precision (MAP) with minimal false positive detections. Results indicate that object detection could be implemented on UAS-acquired imagery as a novel approach to construction stormwater inspections and provide accurate results for site plan comparisons by rapidly detecting the quantity and location of field-installed stormwater practices.


Author(s):  
Hatice Çiğdem ZAĞRA ◽  
Sibel ÖZDEN

Aim: This study aims to comparatively evaluate the use potential of orthophoto images obtained by terrestrial laser scanning technologies on an urban scale through the "Old Lapseki Finds Life Project" prepared using terrestrial laser scanning technologies and the "Enez Historical City Square Project" prepared using traditional methods. Method: In the study, street improvement projects of 29.210 m2 Lapseki and 29.214 m2 Enez city designed on an urban scale were evaluated and compared with descriptive statistics based on different parameters. Results: In the study, it has been determined that terrestrial laser (point cloud) technologies are 99,9% accurate when compared to traditional methods, save time by 83,08% and reduce workforce by 80%. In addition, it has been determined that terrestrial laser scanning technologies accelerate project processes compared to traditional methods. Conclusion: In this study, the use of laser scanning technologies, which are basically reverse engineering applications, in architectural restoration projects, determination of the current situation and damage, architectural documentation of structures and preparation of three-dimensional models, in terms of efficiency in survey studies are evaluated. It has been observed that orthophoto images obtained by terrestrial laser scanning technologies in architectural relief-restoration-restitution projects have potentials' worth using in different stages of the project.


Author(s):  
C. Altuntas

<p><strong>Abstract.</strong> Image based dense point cloud creation is easy and low-cost application for three dimensional digitization of small and large scale objects and surfaces. It is especially attractive method for cultural heritage documentation. Reprojection error on conjugate keypoints indicates accuracy of the model and keypoint localisation in this method. In addition, sequential registration of the images from large scale historical buildings creates big cumulative registration error. Thus, accuracy of the model should be increased with the control points or loop close imaging. The registration of point point cloud model into the georeference system is performed using control points. In this study historical Sultan Selim Mosque that was built in sixteen century by Great Architect Sinan was modelled via photogrammetric dense point cloud. The reprojection error and number of keypoints were evaluated for different base/length ratio. In addition, georeferencing accuracy was evaluated with many configuration of control points with loop and without loop closure imaging.</p>


Author(s):  
Katarzyna Bobkowska ◽  
Jakub Szulwic ◽  
Paweł Tysiac ◽  
Patryk Ziółkowski

The integration issue of virtual models and geo-referenced database have a very broad spectrum of potential applications. Before the integration issue was on the cusp, it was quite problematic to combine three-dimensional models with the geo-referenced database. An integrated database contains a variety of data including such as object orientated data model and raster data. Within this paper, authors present an integration process aiming to make real virtual GIS database which includes the creation of structures, such as bridges, buildings, roads and terrain formations. To create a three-dimensional GIS model high-resolution satellite images/point cloud has been used. For 3D modelling and reconstruction purposes, The Blender program has been used since the software provides with quick workflow and userfriendly interface. As a result of this study authors concede that integrated techniques for three-dimensional GIS databases allow conducting easy as well as sophisticated operation in an efficient and non-time consuming way. The subject holds great promise for a future, current challenges focusing on new approaches for conjectures of spatial objects that will be used to boost the capabilities for automatic visualization.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5373 ◽  
Author(s):  
Jingxin Su ◽  
Ryuji Miyazaki ◽  
Toru Tamaki ◽  
Kazufumi Kaneda

As mobile mapping systems become a mature technology, there are many applications for the process of the measured data. One interesting application is the use of driving simulators that can be used to analyze the data of tire vibration or vehicle simulations. In previous research, we presented our proposed method that can create a precise three-dimensional point cloud model of road surface regions and trajectory points. Our data sets were obtained by a vehicle-mounted mobile mapping system (MMS). The collected data were converted into point cloud data and color images. In this paper, we utilize the previous results as input data and present a solution that can generate an elevation grid for building an OpenCRG model. The OpenCRG project was originally developed to describe road surface elevation data, and also defined an open file format. As it can be difficult to generate a regular grid from point cloud directly, the road surface is first divided into straight lines, circular arcs, and and clothoids. Secondly, a non-regular grid which contains the elevation of road surface points is created for each road surface segment. Then, a regular grid is generated by accurately interpolating the elevation values from the non-regular grid. Finally, the curved regular grid (CRG) model files are created based on the above procedures, and can be visualized by OpenCRG tools. The experimental results on real-world data show that the proposed approach provided a very-high-resolution road surface elevation model.


Drones ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 15 ◽  
Author(s):  
Salvatore Manfreda ◽  
Petr Dvorak ◽  
Jana Mullerova ◽  
Sorin Herban ◽  
Pietro Vuono ◽  
...  

Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of high-quality topographic models, careful consideration of the flight mode and proper distribution of ground control points are required. To this end, a commercial UAS was adopted to monitor a small earthen dam using different combinations of flight configurations and by adopting a variable number of ground control points (GCPs). The results highlight that optimization of both the choice and combination of flight plans can reduce the relative error of the 3D model to within two meters without the need to include GCPs. However, the use of GCPs greatly improved the quality of the topographic survey, reducing error to the order of a few centimeters. The combined use of images extracted from two flights, one with a camera mounted at nadir and the second with a 20° angle, was found to be beneficial for increasing the overall accuracy of the 3D model and especially the vertical precision.


Teknik ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 94
Author(s):  
Yudo Prasetyo

Teknologi dokumentasi gedung secara spasial untuk konservasi dan perencanaan tata ruang semakin berkembang pesat. Urgensi tingkat ketelitian dalam suatu pengukuran juga dituntut semakin tinggi. Salah satu teknologi pembentukan objek tiga dimensi yang berkembang saat ini adalah Terrestrial Laser Scanner (TLS). Metode pengukuran TLS terdiri atas 4 metode yaitu: Cloud to Cloud, Target to Target, Traverse, dan metode kombinasi. Penelitian ini bertujuan untuk menganalisa tingkat ketelitian metode Traverse dalam pengukuran suatu objek model tiga dimensi untuk keperluan dokumentasi gedung menggunakan TLS.Ketelitian metode Traverse akan diujikan pada Gedung Prof. H. Soedarto, S. H. Tingkat ketelitiannya diujikan pada dua parameter yakni hasil metode registrasi dan hasil visualisasi model tiga dimensi. Hasil analisis pengolahan data point cloud menunjukkan bahwa alat TLS dengan metode Traverse dapat digunakan untuk menghasilkan model tiga dimensi Gedung Prof. Sudarto, S. H. Nilai rata-rata validasi yang diperoleh adalah sebesar 0,004 meter dengan besaran ketelitian model RMSE sebesar ±0,00611 meter. 


Sign in / Sign up

Export Citation Format

Share Document