Vehicle Trajectory Analysis System via Mutual Information and Sparse Reconstruction

2017 ◽  
Vol 2645 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Yishi Zhang ◽  
Zhijun Chen ◽  
Chaozhong Wu ◽  
Junfeng Jiang ◽  
Bin Ran

In past years, the task of automatic vehicle trajectory analysis in video surveillance systems has gained increasing attention in the research community. Vehicle trajectory analysis can identify normal and abnormal vehicle motion patterns and is useful for traffic management. Although some analysis methods of vehicle trajectory have been developed, the application of these methods is still limited in practice. In this study, a novel adaptive vehicle trajectory classification method via sparse reconstruction and mutual information analysis based on video surveillance systems was proposed. The l0-norm minimization of sparse reconstruction in the method was relaxed to the lp-norm minimization (0 < p < 1). In addition, to consider the nonlinear correlation between the test trajectory and the dictionary, mutual information between the test trajectory and the reconstructed one was taken into account. A hybrid orthogonal matching pursuit–Newton method (HON) was developed to effectively find the sparse solutions for trajectory classification. Two real-world data sets (including the stop sign data set and straight data set) were used in the experiments to validate the performance and effectiveness of the proposed method. Experimental results show that the trajectory classification accuracy is significantly improved by the proposed method compared with most well-known classifiers, namely, NB, k–nearest neighbor, support vector machine, and typical extant sparse reconstruction methods.

Object recognition in video surveillance systems is the primary and most significant challenge task in the field of image processing. Video Surveillance systems provides us continuous monitoring of the objects for the enhancement of security and control. This paper presents novel approach recognizing the objects using Shi-Tomasi approach for detecting the corners of the object and then applies the Lucas-Kanade techniques to extract the features of the objects. The main objective of this paper is providing precise recognition of objects and estimation of their location from an unknown scene. Whenever the object is recognized from extracted frames of the input video the background subtraction will be applied. Then the classification of the objects into their respective categories can be achieved using support vector machine classifier by supervised learning. In case of multiple objects of different classes in a single frame, a vector containing the classes of all the detected in that frame is produced as output. The results of this work are drawn in the MATLAB tool by considering the input video dataset taken from various sources and extracting the frames from the input video for the detection then the efficiency of the proposed techniques will be measured.


2013 ◽  
Vol 284-287 ◽  
pp. 3543-3548 ◽  
Author(s):  
Chuang Jan Chang ◽  
Shu Lin Hwang

The IP-CAM plays a major role in the context of digital video surveillance systems. The function of face detection can add extra value and can contribute towards an intelligent video surveillance system. The cascaded AdaBoost-based face detection system proposed by Viola can support real-time detection with a high detection rate. The performance of the Alt2 cascade (from OpenCV) in an IP-CAM video is worse than that with regard to static images because the training data set in the Alt2 cannot consider the localized characters in the special IP-CAM video. Therefore, this study presents an enhanced training method using the Adaboost algorithm which is capable of obtaining the localized sampling optimum (LSO) from a local IP-CAM video. In addition, we use an improved motion detection algorithm that cooperates with the former face detector to speed up processing time and achieve a better detection rate on video-rate processing speed. The proposed solution has been developed around the cascaded AdaBoost approach, using the open-CV library, with a LSO from a local IP-CAM video. An efficient motion detection model is adopted for practical applications. The overall system performance using 30% local samples can be improved to a 97.9% detection rate and reduce detection time by 54.5% with regard to the Alt2 cascade.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2019 ◽  
Vol 15 (4) ◽  
pp. 328-340 ◽  
Author(s):  
Apilak Worachartcheewan ◽  
Napat Songtawee ◽  
Suphakit Siriwong ◽  
Supaluk Prachayasittikul ◽  
Chanin Nantasenamat ◽  
...  

Background: Human immunodeficiency virus (HIV) is an infective agent that causes an acquired immunodeficiency syndrome (AIDS). Therefore, the rational design of inhibitors for preventing the progression of the disease is required. Objective: This study aims to construct quantitative structure-activity relationship (QSAR) models, molecular docking and newly rational design of colchicine and derivatives with anti-HIV activity. Methods: A data set of 24 colchicine and derivatives with anti-HIV activity were employed to develop the QSAR models using machine learning methods (e.g. multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM)), and to study a molecular docking. Results: The significant descriptors relating to the anti-HIV activity included JGI2, Mor24u, Gm and R8p+ descriptors. The predictive performance of the models gave acceptable statistical qualities as observed by correlation coefficient (Q2) and root mean square error (RMSE) of leave-one out cross-validation (LOO-CV) and external sets. Particularly, the ANN method outperformed MLR and SVM methods that displayed LOO−CV 2 Q and RMSELOO-CV of 0.7548 and 0.5735 for LOOCV set, and Ext 2 Q of 0.8553 and RMSEExt of 0.6999 for external validation. In addition, the molecular docking of virus-entry molecule (gp120 envelope glycoprotein) revealed the key interacting residues of the protein (cellular receptor, CD4) and the site-moiety preferences of colchicine derivatives as HIV entry inhibitors for binding to HIV structure. Furthermore, newly rational design of colchicine derivatives using informative QSAR and molecular docking was proposed. Conclusion: These findings serve as a guideline for the rational drug design as well as potential development of novel anti-HIV agents.


2020 ◽  
Vol 16 (8) ◽  
pp. 1088-1105
Author(s):  
Nafiseh Vahedi ◽  
Majid Mohammadhosseini ◽  
Mehdi Nekoei

Background: The poly(ADP-ribose) polymerases (PARP) is a nuclear enzyme superfamily present in eukaryotes. Methods: In the present report, some efficient linear and non-linear methods including multiple linear regression (MLR), support vector machine (SVM) and artificial neural networks (ANN) were successfully used to develop and establish quantitative structure-activity relationship (QSAR) models capable of predicting pEC50 values of tetrahydropyridopyridazinone derivatives as effective PARP inhibitors. Principal component analysis (PCA) was used to a rational division of the whole data set and selection of the training and test sets. A genetic algorithm (GA) variable selection method was employed to select the optimal subset of descriptors that have the most significant contributions to the overall inhibitory activity from the large pool of calculated descriptors. Results: The accuracy and predictability of the proposed models were further confirmed using crossvalidation, validation through an external test set and Y-randomization (chance correlations) approaches. Moreover, an exhaustive statistical comparison was performed on the outputs of the proposed models. The results revealed that non-linear modeling approaches, including SVM and ANN could provide much more prediction capabilities. Conclusion: Among the constructed models and in terms of root mean square error of predictions (RMSEP), cross-validation coefficients (Q2 LOO and Q2 LGO), as well as R2 and F-statistical value for the training set, the predictive power of the GA-SVM approach was better. However, compared with MLR and SVM, the statistical parameters for the test set were more proper using the GA-ANN model.


Sign in / Sign up

Export Citation Format

Share Document