scholarly journals Impact of Train and Station Types on Perceived Quality of Rail Service

Author(s):  
Fredrik Monsuur ◽  
Marcus Enoch ◽  
Mohammed Quddus ◽  
Stuart Meek

This paper highlights the impact of train and station types in the evaluation of service quality. A range of relevant trip and sociodemographic factors was taken into account. A partial constrained proportional odds model (an extension of the ordered logit model) was applied to data extracted from the 32nd wave of the National Rail Passenger Survey conducted in spring 2015. This survey constituted about 30,000 trip-level observations of passenger satisfaction with rail services across Great Britain. The results indicated that the impact of train type on service quality was significant. With regard to the type of train services, the modeling results indicated that high-speed rail, long-distance rail, interurban rail, and, especially, open-access operators were more likely to have satisfied customers as compared with commuter and rural railway services. With regard to stations, users of the smallest station category were more likely to be satisfied than users of larger stations, but other station types did not significantly affect satisfaction. Delays had a significant negative impact on satisfaction levels. With regard to passenger segments, respondents in the oldest age category were more likely to be satisfied than respondents in the youngest age category, and commuters were less likely to be satisfied than respondents on a business or leisure trip. Overall, these results show how train operating companies might best focus their efforts on improving passenger satisfaction according to train type, station type, trip stage, and user segment.

2021 ◽  
Vol 235 ◽  
pp. 01016
Author(s):  
Yuzhou Ma

High-speed railway has an essential impact on the economic and social development of the regions along the line. Based on the Beijing-Shanghai high-speed railway, this paper constructs the DID model and analyzes the impact of Beijing-Shanghai high-speed railway on the economic development of prefecture-level cities along the route from the empirical perspective. The empirical analysis results show that the BeijingShanghai high-speed railway has a significant negative impact on the per capita GDP of prefecture-level cities along the line in the short term, mainly because the agglomeration effect is greater than the diffusion effect. Therefore, small cities should actively think about how to deal with the agglomeration effect caused by the construction of high-speed rail.


Author(s):  
Sevara Melibaeva ◽  
Joseph Sussman ◽  
Travis P. Dunn

Deployment of high-speed passenger rail services has occurred around the world in densely-populated corridors, often with the effect of either creating or enhancing a unified economic “megaregion” agglomeration. This paper will review the technical characteristics of a variety of megaregion corridors, including Japan (Tokyo-Osaka), France (Paris-Lyon), and Germany (Frankfurt-Cologne), and their economic impacts. There are many lessons to be drawn from the deployment and ongoing operation of high-speed passenger rail service in these corridors for other countries now considering similar projects, such as the US and parts of the European Union. First, we will review three international cases, describing the physical development of each corridor as well as its measured impacts on economic development. In each case, the travel time reductions of the high-speed service transformed the economic boundaries of the urban agglomerations, integrating labor and consumer markets, while often simultaneously raising concerns about the balance of growth within the region. Moreover, high-speed travel within the regions has had important implications for the modes and patterns of travel beyond the region, particularly with respect to long-distance air travel. An example is the code-shared rail-air service between DeutscheBahn and Lufthansa in the Frankfurt-Cologne corridor. Next, we will examine the implications of these international experiences for high-speed rail deployment elsewhere in the world, particularly the US and Portugal, one of the EU countries investing in high-speed rail. Issues considered include the suitability of high-speed passenger rail service in existing megaregions as well as the potential for formation of megaregions in other corridors. By understanding the impact of high-speed passenger service on economic growth, labor markets, urban form, and the regional distribution of economic activity, planners can better anticipate and prepare countermeasures for any negative effects of high-speed rail. Examples of countermeasures include complementary investments in urban and regional transit connections and cooperation with airlines and other transportation service operators. High-speed passenger rail represents a substantial investment whose implementation and ultimate success depends on a wide range of factors. Among them is the ability of planners and decision-makers to make a strong case for the sharing of benefits across a broad geography, both within and beyond the megaregion (and potential megaregion) corridors where service is most likely to be provided. This paper provides some useful lessons based on international experiences.


2020 ◽  
Vol 46 (3) ◽  
pp. 379-397
Author(s):  
Chunyang Wang

This paper measures the spatial evolution of urban agglomerations to understand be er the impact of high-speed rail (HSR) construction, based on panel data from fi ve major urban agglomerations in China for the period 2004–2015. It is found that there are signi ficant regional diff erences of HSR impacts. The construction of HSR has promoted population and economic diff usion in two advanced urban agglomerations, namely the Yang e River Delta and Pearl River Delta, while promoting population and economic concentration in two relatively less advanced urban agglomerations, e.g. the middle reaches of the Yang e River and Chengdu–Chongqing. In terms of city size, HSR promotes the economic proliferation of large cities and the economic concentration of small and medium-sized cities along its routes. HSR networking has provided a new impetus for restructuring urban spatial systems. Every region should optimize the industrial division with strategic functions of urban agglomeration according to local conditions and accelerate the construction of inter-city intra-regional transport network to maximize the eff ects of high-speed rail across a large regional territory.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 303
Author(s):  
Xinhai Lu ◽  
Yifeng Tang ◽  
Shangan Ke

The construction and operation of high-speed rail (HSR) has become an important policy for China to achieve efficiency and fairness and promote high-quality economic growth. HSR promotes the flow of production factors such as labor and capital and affects economic growth, and may further affect urban land use efficiency (ULUE). To explore the impact of HSR on ULUE, this paper uses panel data of 284 cities in China from 2005 to 2018, and constructs Propensity Score Matching-Differences in Differences model to evaluate the effect of HSR on ULUE. The result of entire China demonstrates that the HSR could significantly improves the ULUE. Meanwhile, this paper also considers the heterogeneity of results caused by geographic location, urban levels and scales. It demonstrates that the HSR has a significantly positive effect on ULUE of Eastern, Central China, and large-sized cities. However, in Western China, in medium-sized, and small-sized cities, the impact of HSR on ULUE is not significant. This paper concludes that construction and operation of HSR should be linked to urban development planning and land use planning. Meanwhile, the cities with different geographical locations and scales should take advantage of HSR to improve ULUE and promote urban coordinated development.


2019 ◽  
Vol 29 (8) ◽  
pp. 1101-1117
Author(s):  
Lin Yang ◽  
Xiangdong Li ◽  
Jiyuan Tu

Due to the fast development of high-speed rail (HSR) around the world, high-speed trains (HSTs) are becoming a strong competitor against airliners in terms of long-distance travel. Compared with airliner cabins, HST cabins have much larger window sizes. When the big windows provide better lighting and view of the scenery, they also have significant effects on the thermal conditions in the cabins due to the solar radiation through them. This study presents a numerical study on the solar radiation on the thermal comfort in a typical HST cabin. The effect of solar radiation was discussed in terms of airflow pattern, temperature distribution and thermal comfort indices. Parametric studies with seven different daytime hours were carried out. The effect of using the roller curtain was also studied. The overall cabin air temperature, especially near passengers, was found to have significantly increased by solar radiation. Passengers sitting next to windows were recorded to have an obvious thermal comfort variation at different hours of the day. To improve the passengers’ comfort and reduce energy consumption during hot weather, the use of a curtain could effectively reduce the solar radiation effect in the cabin environment.


2013 ◽  
Vol 842 ◽  
pp. 445-448
Author(s):  
Wei Chao Yang ◽  
Chuan He ◽  
Li Min Peng

This paper describes the results of numerical work to determine the flow structures of the slipstream and wake of a high speed train on platforms of underground rail station using three-dimensional compressible Euler equation. The simulations were carried out on a model of a simplified three-coach train and typical cross-section of Chinese high-speed railway tunnel. A number of issues were observed: change process of slipstreams, longitudinal and horizontal distribution characteristics of train wind. Localized velocity peaks were obtained near the nose of the train and in the near wake region. Maximum and minimum velocity values were also noticed near to the nose rear tip. These structures extended for a long distance behind the train in the far wake flow. The slipstream in platform shows the typical three-dimensional characteristics and the velocity is about 4 m/s at 6 m away from the edge of platform.


Sign in / Sign up

Export Citation Format

Share Document