scholarly journals INTELLIGENT SYSTEM OF TRAFFIC LIGHT CONTROL WITH DYNAMIC CHANGE PHASES OF TRAFFIC FLOWS ON CONTROLLED INTERSECTIONS

2019 ◽  
pp. 11-17
Author(s):  
Мoroz B. I. ◽  
Udovyk I. M. ◽  
Shvachych G. G. ◽  
Pasichnik A. M. ◽  
Miroshnichenko S. V.

There was method of making an effective system of traffic-light control of the traffic through the intersections in one direction according to which the phase coefficients for each cycle of traffic-light control are computed in real- time using the data of traffic intensity detected by transport detectors. Thus, the built-in traffic control system will be dynamically adapted to the change in the intensity of traffic flows, and the structure of the cycle and its duration will be changed taking into account the parameters of the traffic flow at the intersection. Accordingly, the traffic light cycle, where each cycle has the minimum required duration, will be most effective and will ensure uninterrupted traffic, the lack of traffic jams and the convenience for the pedestrian crossings.

World Science ◽  
2018 ◽  
pp. 15-19
Author(s):  
Мoroz B. I. ◽  
Alekseieiev M. O. ◽  
Shvachych G. G. ◽  
Pasichnik A. M. ◽  
Miroshnichenko S. V.

There was method of making an effective system of traffic-light control of the traffic through the intersections in one direction according to which the phase coefficients for each cycle of traffic-light control are computed in real-time using the data of traffic intensity detected by transport detectors. Thus, the built-in traffic control system will be dynamically adapted to the change in the intensity of traffic flows, and the structure of the cycle and its duration will be changed taking into account the parameters of the traffic flow at the intersection. Accordingly, the traffic light cycle, where each cycle has the minimum required duration, will be most effective and will ensure uninterrupted traffic, the lack of traffic jams and the convenience for the pedestrian crossings.


Nowadays, automatic traffic light control is becoming an important requirement for travelers and number of road users especially for emergency service providers such as ambulance drivers, fire fighters etc... Various alternatives have been proposed, but it has certain limitations.One such example is using an RF transmitter mounted on the ambulance which will communicate with the RF receiver mounted on the signal post in the traffic control system. A special algorithm is provided to control the traffic signals automatically by pressing the key provided in the keybord on the ambulance by the driver.But in this case, there is big trouble for car accidents or road accidents, because of automatic adjustment and a large number of vehicles, and there is a problem of delay in first aid service, with these overcrowded roads. This paper describes a solution that is "Intelligent Ambulance with Automatic Traffic Control” which includes the accident detecting, alerting and tracking mechanism with an automatic traffic light controlling system to overcome this delay of first aid service. An ambulance can thereby easily finde a freeway to reach the victim in a minimal time and thereby providing first aid as soon as possible. This is possible by using an RF transmitter on the ambulance which will communicate with the RF receiver mounted on the signal post in the traffic control system. To control the traffic signals automatically, and to move towards the location in minimal time, a specific algorithm is proposed in this paper. Thus, the traffic light gets controlled by the intelligent ambulance itself, in such a way that it could provide free path to the ambulance[1].


Author(s):  
Adi Sabwa Isti Besari Arkanuddin ◽  
Selo Sulistyo ◽  
Anugerah Galang Persada

Traffic congestion is one of the main problems in transportation sector and it causes a lot of drawbacks to public. The traffic light system is used to reduce the level of occurring traffic congestion. Generally, the available traffic light systems use a fixed time setting. This old traffic control system is no longer able to manage the ever-changing traffic conditions effectively and efficiently, causing a long queue of vehicles. To overcome this problem, a traffic light control system that can adapt to actual conditions of road density and can run automatically is offered. This system utilizes Google Map API as a road density data source. The result of this study is a traffic control system that can adjust the green light time duration based on the obtained density values and density trends, simulation of this adaptive system as well as simulation results analysis. A prototype of this adaptive control system was also produced in this study.


2021 ◽  
Vol 4 (1) ◽  
pp. c28-34
Author(s):  
SUREN KRISHNAN ◽  
RAJAN THANGAVELOO ◽  
SHAPI-EE BIN ABD RAHMAN ◽  
SIVA RAJA SINDIRAMUTTY

The traffic lights control system is broadly implemented to track and control the flow of vehicles through the intersection of multiple roads. Nevertheless, the synchronization of traffic light system at adjacent junctions is an intricate issue given the different parameters involved. Existing traffic light control systems do not control many flows approaching the same junctions. This results in traffic jams and congestion at urban areas or major cities with high volume traffic consisting of various types of vehicles. This includes emergency ambulances travelling on the same traffic junction during peak hour traffic. Thus, an enhanced traffic light control system is imperative to provide a smooth and free flow for an ambulance on the way to its destination. The Smart Ambulance Traffic Control System proposed in this paper is an integrated system of traffic light control for emergency ambulance service. The traffic lights can be controlled in a timely and efficient manner every time an emergency ambulance is approaching. The Radio-Frequency Identification (RFID) is used as an instrument to communicate with traffic lights during traffic congestion. The emergency ambulance driver needs to activate the RFID tag to allow the detection of RFID readers to control the traffic light operation at the upcoming traffic light junctions. The traffic lights in the path of the ambulance are forced to be green to allow the emergency ambulance to pass through the junction with top priority. Immediately after the ambulance has passed the junction, the control system will reset and return to normal operations.


2011 ◽  
Vol 58-60 ◽  
pp. 2477-2482 ◽  
Author(s):  
Nai Jun Xie ◽  
Qi Hua Cheng

Intelligent traffic light control system based on fuzzy control was designed and the implementation of it was also discussed. The system can alter the signal light time according to the number of automobile waiting for passage. The simulation based on Mathematica software show that this method has better effect than traditional way in increase the automobile traffic efficiency and energy saving, what’s more it can adapt to complex traffic conditions.


2021 ◽  
Vol 2021 (2) ◽  
pp. 30-41
Author(s):  
Yuriy Royko ◽  
◽  
Yurii Yevchuk ◽  
Romana Bura ◽  
◽  
...  

The method and results of transport research, carried out by field research method, on the determination of the main indicators of traffic flows with significant unevenness of the movement on the arterial street in conditions of coordinated control is reviewed in the paper. Time parameters of traffic light control for which a reduction in traffic delay is achieved in direct and opposite traffic flow by the change of permissive signal depending on traffic intensity are determined using the simulation method. Change (increase) of the duration of the permissive signal provides uninterrupted movement of vehicles` group during their passage of stop-line at traffic light objects. The proposed method can be used on sections of transport networks with coordinated control, where there is significant heterogeneity of traffic flow, and it prevents the dissipation of groups that consist of vehicles with different dynamic characteristics. Such a result is being performed in the case when in the system of automated control, which combines adjacent intersections on an arterial street, fixed-time program control of traffic light signalization is operating. In this condition, there is a possibility to adjust the duration of signals of traffic light groups by correcting the width (permissive signal duration) and angle of inclination (speed of movement) of the timeline in coordination graphs. The scientific novelty of this research is that the method of traffic delay minimization in conditions of coordinated control acquired further development. The essence of the method is in the controlled change of the range of permissive signal duration in conditions of simultaneous control of the speed of movement between adjacent intersections. Practical value is the application of different programs of traffic light control on sections of arterial streets in transport districts where a significant difference of values of traffic intensity by directions is in morning and evening peak periods.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3363-3367

Advancement of technology and increase in population density expands the quantity of vehicles out. This in turn increases the traffic density, which necessitates the well developed traffic controller. This paper explains a microcontroller based traffic control system. To explain about the system a four way junction is considered. In addition to the normal traffic control system, two special cases are also handled in this system. The developed system is dealing problem of highly dense lane.IR sensors are used to detect the density of the vehicles. This system also help to avoid the unnecessary delay for the priority vehicles. RFID technique is used to identify the priority vehicles. An IOT WIFI module is used in this system to display the traffic signal status and to store the traffic data. This traffic data can be processed in future to design the improved adaptive control system


2021 ◽  
Vol 22 (1) ◽  
pp. 87-97
Author(s):  
Janak D. Trivedi ◽  
Mandalapu Sarada Devi ◽  
Dhara H. Dave

Abstract In India, traffic control management is a difficult task due to an increment in the number of vehicles for the same infrastructure and systems. In the smart-city project, the Adaptive Traffic Light Control System (ATLCS) is one of the major research concerns for an Intelligent Transportation System (ITS) development to reduce traffic congestion and accidents, create a healthy environment, etc. Here, we have proposed a Vehicular Density Value (VDV) based adaptive traffic light control system method for 4-way intersection points using a selection of rotation, area of interest, and Statistical Block Matching Approach (SBMA). Graphical User Interface (GUI) and Hardware-based results are shown in the result section. We have compared, the normal traffic light control system with the proposed adaptive traffic light control system in the results section. The same results are verified using a hardware (raspberry-pi) device with different sizes, colors, and shapes of vehicles using the same method.


This research is focused on laboratory based analysis on hardware module of traffic light with Programmable Logic Controller (PLC) software. There are four ways in hardware model for detection of vehicle; each way has one sensor button, three Light Emitted Diodes (LEDs) with individual colors say red, yellow and green represents the traffic light in each lane. Sensor and LEDs are connected to Mitsubishi Programmable Logic Controller (PLC) and each part on hardware being controlled by PLC. Ladder diagrams are programmed by software to monitor the system and helps to improve public transportation services, thereby improving traffic guidance and traffic light control. The system was developed by setting the appropriate time for the traffic lights to respond accordingly. The controller checks the priority and provides an exit signal to the traffic light post to turn the red, yellow or green lights on or off. Finally, the signal lights were successfully controlled by the PLC. Hence the system used in traffic control systems contain low power consumption, low engineering cost and increased safety.


Sign in / Sign up

Export Citation Format

Share Document