scholarly journals Density Cum Priority based Adaptive Traffic Light Control System

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3363-3367

Advancement of technology and increase in population density expands the quantity of vehicles out. This in turn increases the traffic density, which necessitates the well developed traffic controller. This paper explains a microcontroller based traffic control system. To explain about the system a four way junction is considered. In addition to the normal traffic control system, two special cases are also handled in this system. The developed system is dealing problem of highly dense lane.IR sensors are used to detect the density of the vehicles. This system also help to avoid the unnecessary delay for the priority vehicles. RFID technique is used to identify the priority vehicles. An IOT WIFI module is used in this system to display the traffic signal status and to store the traffic data. This traffic data can be processed in future to design the improved adaptive control system

Nowadays, automatic traffic light control is becoming an important requirement for travelers and number of road users especially for emergency service providers such as ambulance drivers, fire fighters etc... Various alternatives have been proposed, but it has certain limitations.One such example is using an RF transmitter mounted on the ambulance which will communicate with the RF receiver mounted on the signal post in the traffic control system. A special algorithm is provided to control the traffic signals automatically by pressing the key provided in the keybord on the ambulance by the driver.But in this case, there is big trouble for car accidents or road accidents, because of automatic adjustment and a large number of vehicles, and there is a problem of delay in first aid service, with these overcrowded roads. This paper describes a solution that is "Intelligent Ambulance with Automatic Traffic Control” which includes the accident detecting, alerting and tracking mechanism with an automatic traffic light controlling system to overcome this delay of first aid service. An ambulance can thereby easily finde a freeway to reach the victim in a minimal time and thereby providing first aid as soon as possible. This is possible by using an RF transmitter on the ambulance which will communicate with the RF receiver mounted on the signal post in the traffic control system. To control the traffic signals automatically, and to move towards the location in minimal time, a specific algorithm is proposed in this paper. Thus, the traffic light gets controlled by the intelligent ambulance itself, in such a way that it could provide free path to the ambulance[1].


2011 ◽  
Vol 58-60 ◽  
pp. 2477-2482 ◽  
Author(s):  
Nai Jun Xie ◽  
Qi Hua Cheng

Intelligent traffic light control system based on fuzzy control was designed and the implementation of it was also discussed. The system can alter the signal light time according to the number of automobile waiting for passage. The simulation based on Mathematica software show that this method has better effect than traditional way in increase the automobile traffic efficiency and energy saving, what’s more it can adapt to complex traffic conditions.


Author(s):  
Adi Sabwa Isti Besari Arkanuddin ◽  
Selo Sulistyo ◽  
Anugerah Galang Persada

Traffic congestion is one of the main problems in transportation sector and it causes a lot of drawbacks to public. The traffic light system is used to reduce the level of occurring traffic congestion. Generally, the available traffic light systems use a fixed time setting. This old traffic control system is no longer able to manage the ever-changing traffic conditions effectively and efficiently, causing a long queue of vehicles. To overcome this problem, a traffic light control system that can adapt to actual conditions of road density and can run automatically is offered. This system utilizes Google Map API as a road density data source. The result of this study is a traffic control system that can adjust the green light time duration based on the obtained density values and density trends, simulation of this adaptive system as well as simulation results analysis. A prototype of this adaptive control system was also produced in this study.


2021 ◽  
Vol 4 (1) ◽  
pp. c28-34
Author(s):  
SUREN KRISHNAN ◽  
RAJAN THANGAVELOO ◽  
SHAPI-EE BIN ABD RAHMAN ◽  
SIVA RAJA SINDIRAMUTTY

The traffic lights control system is broadly implemented to track and control the flow of vehicles through the intersection of multiple roads. Nevertheless, the synchronization of traffic light system at adjacent junctions is an intricate issue given the different parameters involved. Existing traffic light control systems do not control many flows approaching the same junctions. This results in traffic jams and congestion at urban areas or major cities with high volume traffic consisting of various types of vehicles. This includes emergency ambulances travelling on the same traffic junction during peak hour traffic. Thus, an enhanced traffic light control system is imperative to provide a smooth and free flow for an ambulance on the way to its destination. The Smart Ambulance Traffic Control System proposed in this paper is an integrated system of traffic light control for emergency ambulance service. The traffic lights can be controlled in a timely and efficient manner every time an emergency ambulance is approaching. The Radio-Frequency Identification (RFID) is used as an instrument to communicate with traffic lights during traffic congestion. The emergency ambulance driver needs to activate the RFID tag to allow the detection of RFID readers to control the traffic light operation at the upcoming traffic light junctions. The traffic lights in the path of the ambulance are forced to be green to allow the emergency ambulance to pass through the junction with top priority. Immediately after the ambulance has passed the junction, the control system will reset and return to normal operations.


Author(s):  
J. Isaac Henderson ◽  
M. Aravind

This paper deals with designing an automatic traffic control  system which works on principle of TRAFFIC DENSITY monitored by  Sensors on each side which provides direct information to microcontroller  which rerforms decision making to allow traffic based on density. The three density zones are low, medium and high. In each zone an ad hoc sensor is placed. Each sensor will check the presence of the vehicle in the zone using infrared technology and then ad hoc sensor sends the data to master ad hoc. To locate the sensor, each sensor of different zone is addressed by user and that address is fed to the master ad hoc sensor. This master ad hoc sensor will arrange the data from various sensors in an 8 bit data format. It then performs the required processing to determine the green signal time for each side. It has an exceptional system for high priority vehicles like ambulance, as it senses the direction of arrival of these vehicles and gives a green corridor. The main advantage over conventional system is that a side with heavy traffic doesn’t have to wait unreasonably while a side with no/less traffic gets an equal  amount of time as that of heavy traffic side which is irascible. This is an improved system based on preference for urgency/density of traffic. This can prove useful in especially Junctions of importance, thereby mediating traffic flow correctly.


Author(s):  
Kenneth Akpado ◽  
Samuel Usoro ◽  
Nneka Ezeani

Emergency Vehicles (EV) such as ambulances, fire fighting vehicles, Road safety vehicles and other emergency vehicles encounter delays on their missions at traffic light control points due to traffic jams. The direct consequence of these delays results in unwarranted loss of lives and properties.  This research work proposes and implements an improved traffic control system with preference to emergency vehicles leveraging RFID technology and a novel Dynamic Traffic Sequence Algorithm (DTSA). Atmega 328 was used to actualize the novel DTSA, control the RFID and the entire traffic control system. The distance of RFID signal transmitted by the emergency vehicle was determined by physically measuring the distance of clearer signal obtained at various distances from the test bed. MATLAB was used to plot the response time of the RFID, thereby helping in the choice of RFID used. It was observed at 100 meters distance between the RFID transmitter in the emergency vehicle (EV) and the traffic light system, a clearer signal was obtained. Therefore at 100 meters the emergency vehicle will be detected and the traffic system will reset its normal routine to give right of way to the particular lane that the emergency vehicle is detected. Comparing the old and the new system it was observed that in the new system the EV will be 12minutes faster than the EV in the old system. From the result obtained, the RFID best suited for this application is active RFID. The results obtained proved that the system will effectively mitigate and almost completely eradicate the delay encountered by emergency vehicles at traffic control points.  The system will be deployed in any many cities in Nigeria that have traffic control systems installed.


In India, the concept of smart city has evolved since last few years. Smart city includes smart electricity distributions, smart parking, smart lighting on streets, smart water distribution, smart drainage system, smart pipe gas system, smart traffic control system etc. All smart systems listed need smart use of technical solution so that all systems will play critical role in making city as smart. As far as smart traffic control is concerned, there were few solutions suggested and implanted such as sensor with CCTV, camera with IR sensor and tags etc. The technical solution may include software, hardware, communication models, networking, usage of data and of-course data analytics. As large amount of data may be generated by the objects/components involved in the system, it must be analyzed properly. The data may be in structured or un-structured format. In this paper, smart traffic control system with efficient algorithm has been proposed with data analytics to control traffic, which controls the timing of the signal dynamically. At a junction, there is need to control the traffic and signal timing such that air and noise pollution also will be monitored and controlled. In this model, IoT system has been proposed with ultrasonic sensors to control the traffic. The signal timing will be dynamically monitored and adjusted with traffic density within a region. This will give solution to control, monitor the traffic at every signal in a city


In recent years, traffic Jams has become a serious problem across the globe. Current statistics reveals that, an average person spends around 4-6 months of his/her life by simply waiting for green light during traffic. Also when delay increases, it affects the commuters reach their destination so late resulting in severe consequences on day and day basis. In common, traffic can be controlled in several main junctions by incorporating either automated traffic light control system or through manual intervention by traffic police. However conventional traffic light system which involves fixed time slot allotted to each side of the junction is found to be poor efficient since it does not consider the varying traffic density. At certain instances, priority of the traffic system has to be changed dynamically based on more number of vehicles waiting on the road, arrival of VIP vehicles and ambulance vehicles etc. By considering the above facts, we have proposed an automated traffic light system which has inbuilt potential to prioritize the lane which is heavily congested. Our proposed system includes timer which runs for a specific time period and IR sensor is used to count the number of vehicles passing by during that time period. It also includes LED which is turned green on the lane with more number of vehicles. These peripherals were actuated based on the programming logic that is embedded in Arduino Mega platform. Finally, implementation results for the proposed system are provided in this paper.


Sign in / Sign up

Export Citation Format

Share Document