scholarly journals Modeling Of A Reactive Distillation Column: Methyl Tertiary Butyl Ether (Mtbe) Simulation Studies

1970 ◽  
Vol 4 (2) ◽  
Author(s):  
Ismail Mohd Saaid Abdul Rahman Mohamed and Subhash Bhatia

A process simulation stage-wise reactive distillation column model formulated from equilibrium stage theory was developed. The algorithm for solving mathematical model represented by sets of differential-algebraic equations was based on relaxation method. Numerical integration scheme based on backward differentiation formula was selected for solving the stiffness of differential-algebraic equations. Simulations were performed on a personal computer (PC Pentium processor) through a developed computer program using FORTRAN90 programming language. The proposed model was validated by comparing the simulated results with the published simulation results and with the pilot plant data from the literature. The model was capable of predicting high isobutene conversion for heterogeneous system, as desirable in industrial MTBE production process. The comparisons on temperature profiles, liquid composition profile and operating conditions of reactive distillation column also showed promising results. Therefore the proposed model can be used as a tool for the development and simulation of reactive distillation column.Keywords: Modeling, simulation, reactive distillation, relaxation method, equilibrium stage, heterogeneous, MTBE

2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Zuzana Švandová ◽  
Jozef Markoš ◽  
L’udovít Jelemenský

AbstractComparison of the performance of a reactive distillation column with three different hardware configurations is presented. As a reaction system the methyl tertiary-butyl ether (MTBE) synthesis has been chosen. The sieve tray columns with catalyst (encased inside wire gauze envelopes) placed along the liquid flow path differ in the number of reactive trays. The column simulations have been performed using the nonequilibrium model. The steady state behaviour of the three different hardware configurations was studied regarding the three input parameters; feed flow rate of methanol, feed flow rate of butenes, and reflux ratio. It has been shown that by varying the location of the methanol feed stage, the columns exhibit significantly different solution diagrams using the butenes feed flow rate as a continuation parameter. Using dynamic simulations, different perturbations of the manipulated variables were found to cause transitions between multiple steady states and these were also investigated. The major objective of this paper is to demonstrate the importance of the hardware choice in the performance of a reactive distillation column e.g. during the start-up or if occasional variations of the operating parameters occur.


Author(s):  
John K. Kamel ◽  
Samuel Paolucci

We describe the general mathematical model as well as the numerical integration procedure arising in modeling a realistic chemical vapor infiltration process. The numerical solution of the model ultimately leads to the solution of a large system of stiff differential algebraic equations. An operator splitting algorithm is employed to overcome the stiffness associated with chemical reactions, whereas a projection method is employed to overcome the difficulty arising from having to solve a large coupled system for the velocity and pressure fields. The resulting mathematical model and the numerical integration scheme are used to explore temperature, velocity, and concentration fields inside a chemical vapor infiltration reactor used in the manufacturing of aircraft brakes.


2013 ◽  
Vol 284-287 ◽  
pp. 409-413
Author(s):  
Sudibyo Sudibyo ◽  
Muhamad Nazri Murat ◽  
Norashid Aziz

MTBE is a chemical that can be used as anti-knock additive to replace lead additive (tetra ethyl lead) which can be efficiently produced using reactive distillation process. It has been established in the literature that MTBE reactive distillation poses a highly nonlinear behavior due to the combination of reaction and separation processes. A reliable model for predicting the behavior is required especially for the control purposes. In this work, a Neural Wiener model which is one of the available types of oriented block model was utilised to develop the MTBE reactive distillation model. The required data for the Neural Wiener model were generated using a validated Aspen dynamics model for the MTBE reactive distillation process. It is found that the Neural Wiener model is capable to predict the MTBE purity and isobutene conversion with accuracy of 98.55% and 96.95%, respectively. Those values are quantitatively better in comparison to the state space model which gives lower values for prediction accuracy of 87.86% and 82.90%, respectively.


Author(s):  
Xiao-Li Ding ◽  
Yao-Lin Jiang

AbstractThe waveform relaxation method has been successfully applied into solving fractional ordinary differential equations and fractional functional differential equations [11, 5]. In this paper, the waveform relaxation method is further used to solve fractional differential-algebraic equations, which often arise in integrated circuits with new memory materials. We give the iteration scheme of the waveform relaxation method and analyze the convergence of the method under linear and nonlinear conditions for the right-hand of the equations. Numerical examples illustrate the feasibility and efficiency of the method.


2000 ◽  
Vol 10 (03n04) ◽  
pp. 205-218 ◽  
Author(s):  
YAO-LIN JIANG ◽  
RICHARD M. M. CHEN

The multisplitting technique introduced by D. P. O'Leary and R. E. White is applied to treat the waveform relaxation solutions for systems of linear integral-differential-algebraic equations in circuit simulation. The convergence condition of the multisplitting waveform relaxation method which can contain overlapping is established for the continuous-time case. The convergence rates of the relaxation-based method for different multisplittings are compared from the view-point of spectral radii of splitting matrices in systems. Numerical experiments are provided to confirm the new theoretical results.


Sign in / Sign up

Export Citation Format

Share Document