scholarly journals Evaluation and Release of Two Peanut Cultivars: A Case Study of Partnerships in Ghana

2019 ◽  
Vol 46 (1) ◽  
pp. 37-41 ◽  
Author(s):  
M. Owusu–Akyaw ◽  
M.B. Mochiah ◽  
J.Y. Asibuo ◽  
K. Osei ◽  
A. Ibrahim ◽  
...  

ABSTRACT New technologies combined with improved genetics and farmer access are important components required to improve productivity and efficiencies of cropping systems. The ability of the public and private sector to provide these components to farmers often vary considerably and can be challenging because of limited resource allocation and investment in institutions designed to provide these services. Partnerships among national programs where resources are limited and external entities can provide an effective platform to deliver improved cultivars and production and pest management practices that increase crop yield and economic viability of resource-poor farmers. In this note, we describe a partnership between the Council for Scientific and Industrial Research-Crops Research Institute (CSIR-CRI) in Ghana, the International Center for Research in the Semi-Arid Tropics (ICRISAT), the US Agency for International Development Peanut Collaborative Research Support Program (USAID Peanut CRSP), the Feed the Future Innovation Lab on Peanut Productivity and Mycotoxin Control (PMIL), and North Carolina State University (NCSU) that resulted in the release of two ICRISAT-derived lines as cultivars to farmers in Ghana. The cultivars Otuhia (Arachis hypogaea L.) and Yenyawoso (Arachis hypogaea L.) were released by CSIR-CRI in 2012 following evaluations of breeding lines beginning in 1999. This case study provides insight into the research focus and timeline that occurred with this partnership during the research and development process. A portion of the data obtained to support release of these cultivars is provided.

2009 ◽  
Vol 36 (2) ◽  
pp. 165-173 ◽  
Author(s):  
I. K. Dzomeku ◽  
M. Abudulai ◽  
R. L. Brandenburg ◽  
D. L. Jordan

Abstract Peanut (Arachis hypogaea L.) is the most popular legume cultivated for food and cash in the Guinea and Sudan savannah ecologies of northern Ghana. A three-year survey was conducted between 2003 and 2005 to: (1) document the prevalence of weed species, (2) determine current cropping systems and weed management practices, and (3) assess the response of peanut to weed management practices. Flora with more than 5% dominance included: (1) the dicotyledonous weeds, Corchorus olitorius L. Commelina benghalensis L., Commelina diffusa Burm., f, Desmodium scorpluras (Sw.) Desv., Hyptis suoveolens Poit., Mimosa invisa Mart., Mimosa pigra L., Mitracarpus villosus (Sw.) DC., Oldenlandia corymbosa L., Phyllanthus amarus Schum. & Thonn., Scoparia dulcis L., Tridax procumbens L., Triumfeta cordiflora A. Rich., and Vernonia galamensis (Cass.) Less.; (2) the monocotyledonous weeds Axonopus compresus (Sw.) P. Beauv., Cyperus esculentus L., Cyperus rotundus L., Digitaria horizontalisWilld., Eragrostis tremula Hochst. Ex Steud., Hackelochloa granularis (L.) O. Ktze., Kyllinga erecta Schumach. Var., Kyllinga squamulata Thonn. Ex Vahl., Paspalum scrobiculatum L., Rottboellia cochinchinensis (Lour.) Clayton, and Setaria pallide-fusca (Schum.) Stapf. & C.E. Hubbard; and (3) the parasitic weed Striga hermonthica (Del.) Benth. Land preparation practices included the use of tractors, followed by use of livestock, and lastly hand preparation. Cropping systems consisted of cereals preceding peanut, peanut preceding peanut, and intercropping peanut with sorghum (Sorghum bicolor L. Moench.), millet (Pennisetum Americanum L.), or corn (Zea mays L.). Genetically-improved peanut cultivars expressing bunch or erect growth habits were the most common cultivars although some farmers planted local cultivars expressing a distinct runner growth habit. The majority of farmers planted peanut from early June to early July based on rainfall pattern. Eighty-eight percent of peanut fields were hand weeded once, 3 to 5 weeks after planting (WAP) or twice, 2 to 3 and 5 to 6 WAP. Weed management was generally poorly timed and insufficient to prevent significant weed interference resulting in total oven-dried weed biomass ranging from 600 to 2400 kg/ha at harvest. Peanut haulm production ranged from 500 to 5500 kg/ha with improved cultivars. Pod yield production ranged from 200 to 1680 kg/ha. Results from this survey revealed the need for accelerated research and capacity building of farmers and agricultural extension agents for improved technology transfer to the peanut industry in the region.


1989 ◽  
Vol 16 (1) ◽  
pp. 9-14 ◽  
Author(s):  
O. D. Smith ◽  
T. E. Boswell ◽  
W. J. Grichar ◽  
C. E. Simpson

Abstract Eight breeding lines, three parents, and the cultivar Florunner were compared under two levels of disease pressure induced by Sclerotium rolfsii Sacc., or Pythium myriotylum Drechs. at each of two locations for three years to ascertain the effectiveness of the host plant resistance to each pathogen. Varied disease pressures were created by application of fungicides and supplement of fungal inoculum. Mean Florunner pod yields varied more than 1000 kg/ha as a result of the S. rolfsii treatments but the yields of the resistant TxAG-3 were not affected. Disease incidence, as measured by frequency of S. rolfsii infection sites and diseased pods, was much higher for Florunner than TxAG-3. Breeding lines for which TxAG-3 was a parent sustained significant yield reductions. The disease incidence in these lines was higher than the resistant parent, equal or less than Tamnut 74, their other parent, and less than Florunner. The grades of TxAG-3 and its derivatives were lower than Florunner. Pod rot incidence differed for the P. myriotylum treatments but pod yields were not different. TxAG-3 and Toalson sustained less pod disease than Florunner and Tamnut 74. The percent of diseased pod tissue for one derivative of Toalson was lower than Toalson and TxAG-3, and that of one TxAG-3 derivative was equal to its best parent. The breeding lines varied in reaction to the two diseases and some lines showed considerable resistance to both organisms.


2006 ◽  
Vol 33 (2) ◽  
pp. 83-89 ◽  
Author(s):  
C. A. Hurt ◽  
R. L. Brandenburg ◽  
D. L. Jordan ◽  
B. M. Royals ◽  
P. D. Johnson

2017 ◽  
Vol 44 (2) ◽  
pp. 77-82 ◽  
Author(s):  
R. B. Sorensen ◽  
R.C. Nuti ◽  
C.C. Holbrook ◽  
C.Y. Chen

ABSTRACT Peanut (Arachis hypogaea L.) peg strength and associated pod yield and digging loss were documented for nine cultivars and two breeding genotypes across three harvest dates (early, mid, and late season) at two Southwest Georgia locations during 2010 and 2011. Cultivars selected were Georgia Green, Georgia Greener, Georgia-02C, Georgia-06G, Georgia-07W, Georgia-09B, Georgia-10T, Florida-07, Tifguard, and advanced breeding lines EXP27-1516 and TifGP-2. Prior to digging, a minimum of three peanut plants from each plot were selected and excess stems and leaves were removed with scissors leaving individual peanut pegs and pods with about 5-cm of stem. Each peanut pod was placed in a “U” shaped metal bracket attached to an electronic force gauge and the stem was pulled manually until the pod detached. After digging and combining, a tractor-mounted scavenger machine was used to collect pods remaining in the soil. Peg strength was greater at Dawson (6.14 N) compared to Tifton (5.28 N) in 2010 but were similar in 2011 (4.51 and 4.39 N, respectively). Dawson had consistently higher yields (5326 kg/ha) and lower pod loss (562 kg/ha) compared with Tifton (3803 kg/ha and 936 kg/ha, respectively). Peanut cultivars with greater peg strength across locations were Georgia-06G, Florida-07, and Georiga-02C. Cultivar Georiga-06G showed the greatest yield across locations and years. Other cultivars may have had stronger peg strength, greater pod yield, or lower pod loss but none were more consistent than these three cultivars across years, locations, and harvest dates.


Author(s):  
Tran Xuan Minh ◽  
Nguyen Cong Thanh ◽  
Tran Hau Thin ◽  
Nguyen Thi Huong Giang ◽  
Nguyen Thi Tieng

Background: Peanut (Arachis hypogaea L.) is one of the oil and cash crops in Vietnam. However, owing to the lack of appropriate management practices, the production and the area under cultivation of peanut have remained low. Mulches are the key factors contributing to promoting crop development and early harvest and increasing yields. Methods: The experiment consisted of three mulch treatments, viz., plastic mulch, straw mulch and no-mulch control. All the treatments were replicated thrice in a complete randomized block design. Result: In the conditions of mulch, the plant growth parameters (germination rate, growing time, plant height, number of branches per plant), leaf area index, the number of nodules per plant, dry matter accumulation, yield components and yield of peanut was much higher than that of no-mulch control. Among the mulches, plastic mulch was found superior to straw mulch in the pod yields and water-use efficiency and moisture conservation, thereby can be considered as a reliable practice for increasing the productivity of peanut on the coastal sandy land in Nghe An province, Vietnam.


1994 ◽  
Vol 21 (2) ◽  
pp. 112-115 ◽  
Author(s):  
D. W. Gorbet ◽  
R. L. Stanley ◽  
D. A. Knauft

Abstract Livestock production enterprises in the southern USA depend primarily on forage for feed. With the development of peanut (Arachis hypogaea L.) lines with good late leaf spot (Cercosporidium personatum (Berk. & Curt.) Deighton) resistance in the Florida breeding program, studies were initiated in 1983 at Marianna to evaluate their forage potential. Peanut breeding lines were grown without fungicide applications for leaf spot control and cuttings were made to evaluate forage production. Two forage cuttings were compared to a single cutting or harvest for each genotype. Pod yields were taken at the end of each season. Some lines produced dry matter forage yields exceeding 9000 kg ha-1 with two cuttings, with some single harvest yields exceeding 7000 kg ha-1. Significant differences were observed among genotypes, years, and forage harvest treatments. Two cuttings always produced the greatest forage yield but reduced pod yields as much as 50% for some entries. Some genotypes produced pod yields of 4000 kg ha-1 with the single forage harvest. Crude protein values for the forage were generally higher for two cuttings (14.0 − 19.6%), as compared to the single cutting or harvest (12.5 − 15.1%). In vitro organic matter digestibility (IVOMD) ranged from 59.6 − 72% for forage samples. These protein and digestibility values compare favorably to alfalfa (Medicago sativa L.) and perennial rhizoma peanut cultivars of A. glabrata Benth.


Sign in / Sign up

Export Citation Format

Share Document