scholarly journals Using crop simulation model to evaluate influence of water management practices and multiple cropping systems on crop yields: A case study for Ethiopian highlands

2021 ◽  
Vol 260 ◽  
pp. 108004
Author(s):  
A. Araya ◽  
P.V.V. Prasad ◽  
I.A. Ciampitti ◽  
P.K. Jha
Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


Author(s):  
Jéssica Sousa Paixão ◽  
Derblai Casaroli ◽  
João Carlos Rocha dos Anjos ◽  
José Alves Júnior ◽  
Adão Wagner Pêgo Evangelista ◽  
...  

2009 ◽  
Vol 147 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Q. JING ◽  
H. VAN KEULEN ◽  
H. HENGSDIJK ◽  
W. CAO ◽  
P. S. BINDRABAN ◽  
...  

SUMMARYAbout 0·10 of the food supply in China is produced in rice–wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE.Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N supply.


2019 ◽  
Vol 11 (23) ◽  
pp. 6567 ◽  
Author(s):  
Dennis Junior Choruma ◽  
Oghenekaro Nelson Odume

Globally, farmers remain the key ecosystem managers responsible for increasing food production while simultaneously reducing the associated negative environmental impacts. However, research investigating how farmers’ agricultural management practices are influenced by the values they assign to ecosystem services is scarce in South Africa. To address this gap, a survey of farmers’ agricultural management practices and the values they assigned towards ecosystem services was conducted in the Eastern Cape, South Africa. Results from the survey show that farmers assign a high value on food provisioning ecosystem services compared to other ecosystem services. Irrigation and fertiliser decisions were mostly based on achieving maximum crop yields or good crop quality. The majority of farmers (86%) indicated a willingness to receive payments for ecosystem services (PES) to manage their farms in a more ecosystems-oriented manner. To encourage farmers to shift from managing ecosystems for single ecosystem services such as food provision to managing ecosystems for multiple ecosystem services, market-oriented plans such as PES may be employed. Effective measures for sustainable intensification of food production will depend on the inclusion of farmers in the development of land management strategies and practices as well as increasing farmers’ awareness and knowledge of the ecosystem services concept.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2043
Author(s):  
Kavindra Paranage ◽  
Nancy Yang

Traditionally, the literature on water management has considered water from a techno-realist point of view by focusing on finding the most effective technical solutions to distribute the largest quantities of water among populations. This paper takes an alternative position by suggesting that particular “ways” of managing water are culturally embedded and that water management practices stem from an underlying hydro-mentality among water users and system designers. To this end, we explore two different water systems in Sri Lanka and argue that each system is underpinned by a particular hydro-mentality that influences the ways in which water is managed by downstream communities.


Sign in / Sign up

Export Citation Format

Share Document