scholarly journals ECONOMIC SUPPLY OF INNOVATION TECHNOLOGIES FOR THE DEVELOPMENT OF CARBON HEALTH CARE WITH OIL-WEIGHTED SPARE PARTS

Author(s):  
M. S. Pilka

T The possibilities of attraction of investments for efficient removal of hydrocarbon reserves, which belong to hardrecoverable and mechanisms for attracting investments in the further development of oil and gas deposits in Ukraine, are presented. The main principles of the ranking of hydrocarbon reserves are considered, deposits structure analysis is needed to evaluate the prospects of transferring their parts to cost-effective ones if some economic conditions will change, as well as the appearance of new methods and technologies for attracting these reserves into development. For oil and gas companies information about the qualitative characteristics of profitable reserves and their distribution in the collectors is very important. The main advantages of using intelligent oil and gas field technologies, which enable real-time realization of fast processing of large volumes of geological information, modeling of various extraction scenarios, and the adoption of rational management decisions for optimizing oil and gas production are described. Hydrodynamic modeling, as an instrument for the search and growth of hydrocarbon reserves, its quantitative and qualitative assessment and a detailed comprehensive study of productive collectors based on modern achievements in geological and geophysical sciences is one of the main ways of development of hardrecoverable reserves. The application of existing and the creation of new technological solutions for the efficient production of oil and gas with positive economic indicators, is a logical continuation of a complex of works on low-yielding hydrocarbon deposits. The main source of growth of hydrocarbon reserves in deposits with a long history of development are: unidentified reserves outside the productive part of the deposit and missed oil-saturated intervals; oil-saturated intervals in the productive section, which aren’t attracted in the development. The development of hardrecoverable reserves is associated with considerable complexity, but the engineering approach, using development monitoring, hydrodynamic modeling, attracting international experience and new technologies, will increase profitability and obtain additional extraction of significant volumes of hydrocarbons, which will ensure not only the achievement of maximum investment efficiency, but also full usage of natural resources of hydrocarbons.

Author(s):  
O. V. Panevnyk ◽  
D. O. Panevnyk

Based on the study of the dynamics of global costs for oilfield equipment, it was found that its production shows slow growth, the largest share of oil and gas machinery is in North America, and the largest segment of production belongs to the manufacture of equipment for collecting and transporting hydrocarbons and pipe products. In the process of analysis of the nomenclature and geography of production of machines, mechanisms, individual components and parts of drilling and oil and gas equipment, the inconsistency of the level of development of oil and gas engineering in Ukraine with the needs of the fuel and energy complex is shown. The required level of production of equipment and spare parts directly depends on the quality of maintenance of oil and gas machines, which with the development of new technologies for the development of hydrocarbon fields should increase. The main reasons for failures of oil and gas equipment are the lack of proper maintenance. Domestic oil companies are focused on the import of oil equipment, and a negative problem for the development of the domestic market of oil services is the reduction of their own production of oil and gas equipment. One of the most important competitive advantages of domestic service companies is a lower level of prices for services, as well as a deeper knowledge of the specifics and features of local conditions for the development of hydrocarbon deposits. An important aspect of the development of the service market is the transition to innovative technologies in the field of geological engineering and drilling. In accordance with the development trends of the world oil and gas engineering industry, the staffing requirements of service companies are increasing. Given the complexity of mining and geological conditions for the development of hydrocarbon deposits, the development of new technologies for oil and gas production requires increasing attention to training specialists who are aware of modern methods of design, operation and maintenance of oil and gas equipment.


Subject Cuba's energy troubles. Significance With a previously generous Venezuela facing economic crisis and the United States tightening sanctions, Cuba’s ability to augment its limited domestic oil and gas production is severely constrained. It lacks the export earnings to invest in new technologies and power generating capacity that could ease its fuel supply problems. Russia and China have spoken of offering assistance, but neither is inclined to provide handouts in the absence of commercial returns. Impacts Cuba has tried to trade more with Algeria and Angola but remains vulnerable to international oil price shifts. As a major producer of both sugar and biofuels, Brazil could provide a model for Cuba’s biofuel plans. Cubans are resilient and accustomed to hardship; the country’s looming economic troubles are unlikely to trigger serious unrest.


Author(s):  
V. T. Trofimov ◽  
A. V. Nikolaev ◽  
A. D. Zhigalin ◽  
T. A. Baraboshkina ◽  
M. A. Kharkina ◽  
...  

Oil and gas industry shows the danger of this kind of industry, including from the environmental point of view. Entering the waters of marginal seas and ocean significantly aggravated the situation, moving a significant part of the emergency situations related to hydrocarbon production, the level of regional and global. The use of new technologies in the production of shale hydrocarbons added new problems - the total probability of contamination of large amounts of geological space highly toxic chemicals. Tracking down of a new perspective mineral energy source - gas hydrates - allows to plan only while possible passing dangers, but shows, that the ecological risk can many times more. For opposition to threat of occurrence of emergencies in connection with growth of extraction of hydrocarbons expediently creation at a national level of special structures of the control and fast reaction. Such structures can be if necessary opened for the international cooperation, and are entered into jurisdiction of the United Nations Organization.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1293
Author(s):  
Shamil Islamov ◽  
Alexey Grigoriev ◽  
Ilia Beloglazov ◽  
Sergey Savchenkov ◽  
Ove Tobias Gudmestad

This article takes an approach to creating a machine learning model for the oil and gas industry. This task is dedicated to the most up-to-date issues of machine learning and artificial intelligence. One of the goals of this research was to build a model to predict the possible risks arising in the process of drilling wells. Drilling of wells for oil and gas production is a highly complex and expensive part of reservoir development. Thus, together with injury prevention, there is a goal to save cost expenditures on downtime and repair of drilling equipment. Nowadays, companies have begun to look for ways to improve the efficiency of drilling and minimize non-production time with the help of new technologies. To support decisions in a narrow time frame, it is valuable to have an early warning system. Such a decision support system will help an engineer to intervene in the drilling process and prevent high expenses of unproductive time and equipment repair due to a problem. This work describes a comparison of machine learning algorithms for anomaly detection during well drilling. In particular, machine learning algorithms will make it possible to make decisions when determining the geometry of the grid of wells—the nature of the relative position of production and injection wells at the production facility. Development systems are most often subdivided into the following: placement of wells along a symmetric grid, and placement of wells along a non-symmetric grid (mainly in rows). The tested models classify drilling problems based on historical data from previously drilled wells. To validate anomaly detection algorithms, we used historical logs of drilling problems for 67 wells at a large brownfield in Siberia, Russia. Wells with problems were selected and analyzed. It should be noted that out of the 67 wells, 20 wells were drilled without expenses for unproductive time. The experiential results illustrate that a model based on gradient boosting can classify the complications in the drilling process better than other models.


Author(s):  
M. M. Orfanova

The need to improve the technological processes of raw fuel resources processing, to search for new technologies and to involve oil and gas waste production wastes as anthropogenic resources becomes urgent. The main directions of using the effects of the mechanical activation of substances in the technological processes of oil and gas production are analyzed.  A brief description of the method of mechanical activation is provided. The prospect of using the method of mechanical activation to solve the problem of waste disposal is shown. The author analyzes the main directions of mechanical activation influence used for changing the composition and properties of hydrocarbons and considers the possibilities of mechanical activation of a substance as an efficient way for accelerating the mechano-chemical processes that occur in hydrocarbons due to intense mechanical loads. The article generalizes the research results concerning the effect of mechanical activation on changes in the physical-chemical properties of oil, fuel oil, bottoms and sludge. The results of using mechanical activation for the preparation of plug-back mixtures based on silica sand and quartziferous waste are summarized. The laboratory research was carried out at a centrifugal-planetary mill. It is established that under the conditions of mechanical activation of hydrocarbons their destruction occurs. The process of transformations is a chain nature. The areas of mechanical and chemical transformations, change of fraction content in residual fuel oil, bottom products, and natural gasoline have been investigated. It has been established that destruction of hydrocarbon fractions takes place. The author demonstrates that processing modes, time and mechanical loads affect the course of hydrocarbon destruction, and its results depend on the type of substance. The researcher proves that it is promising to use the method of mechanical activation to control the properties of mineral flour obtained on the basis of oil sludge. The results of the research indicate clearly that it is possible to get different volume of the light cuts yield by regulating the modes of hydrocarbons processing. The author shows the possibility of increasing the depth of oil refining, as well as the possibility of obtaining a cement mixture with the addition of up to 30% of mechanically activated quartziferous additive without deteriorating the characteristics of cement stone achieved. The method of mechanical activation is promising for the utilization of the wastes of oil and gas complex, as these wastes can be considered the anthropogenic raw materials.


Author(s):  
Shamil Islamov ◽  
Alexey Grigoriev ◽  
Ilya Beloglazov ◽  
Sergey Savchenkov ◽  
Ove Tobias Gudmestad

Drilling of wells for oil and gas production is a highly complex and expensive part of reservoir development. Thus, together with injury prevention, there is a goal to save cost expenditures on downtime and repair of drilling equipment. Nowadays companies have begun to look for ways to improve the efficiency of drilling and minimize non-production time with the help of new technologies. To support decisions in a narrow time frame, it is valuable to have an early warning system. Such a decision support system will help an engineer to intervene in the drilling process and prevent high expenses of unproductive time and equipment repair due to a problem. This work is describing a comparison of machine learning algorithms for anomaly detection during well drilling. Tested models classify drilling problems based on historical data from previously drilled wells. To validate anomaly detection algorithms, we use historical logs of drilling problems for 67 wells at a large brownfield in Siberia, Russia. Wells with problems were selected and analyzed. It should be noted that out of the 67 wells, 20 wells were drilled without expenses for unproductive time. Experiential results illustrated that a model based on gradient boosting can classify the complications in the drilling process best of all.


2006 ◽  
Vol 46 (1) ◽  
pp. 395
Author(s):  
R. Freij-Ayoub ◽  
M. Rivero ◽  
E. Nakagawa

Offshore exploration and production is going to deep and ultra deep waters, driven by the depletion of continental shelf reserves and the high demand for hydrocarbons. This move requires the continued extension of existing technologies and the development of new technologies that will make the investment economically viable. Innovative flow assurance technology is needed to support ultra deepwater production, particularly within the concept of platform free fields where there is a need to minimise interventions.Hydrates present one of the major challenges in flow assurance. Deep and ultra deep water operations together with long tiebacks present the ideal conditions for the formation of hydrates which can result in pipeline blockage and serious operational and safety concerns. Methods to combat hydrates range between control and management. One main technique has been to produce the hydrocarbons outside of the thermodynamic stability domain of hydrates. This is achieved by keeping the temperature of the hydrocarbon above the stability temperature of hydrates by insulating the pipe line, or by introducing heat to the hydrocarbon. Another efficient way of combating hydrates has been to shift the hydrate phase boundary to lower temperatures by using chemicals like methanol and mono ethylene glycol (MEO) which are known as thermodynamic inhibitors. Within the last decade a new generation of hydrate inhibitors called low dosage hydrate inhibitors (LDHI) has been introduced. One type of these LDHI are kinetic hydrate inhibitors (KHI) that, when used in small concentrations, slow down hydrate growth by increasing the induction time for their formation and preventing the start of the rapid growth stage. Another approach to managing hydrates has been to allow them to form in a controlled manner and transport the hydrate-hydrocarbon slurry in the production pipe. In this paper we describe the various approaches used to combat hydrates to ensure flow assurance and we discuss the cons and pros of every approach and the technology gaps.


2021 ◽  
Vol 73 (08) ◽  
pp. 48-48
Author(s):  
Birger Velle Hanssen

Flow assurance in subsea oil and gas fields often presents significant challenges. Every field has its own combination of difficulties, and no universal process or system can be used to mitigate these. Detailed knowledge across a broad range of competencies, therefore, is required to find solutions that can minimize the risk of not getting the hydrocarbons safely to the process facilities. Many subsea fields that are being developed today are long tiebacks, taking advantage of existing offshore infrastructure or producing directly to shore. These developments must deal with the long-distance transport of hydrocarbons in deep cold water, commonly increasing the risk of hydrate formation and wax deposition, for example. In addition, large elevation changes from deep water to surface and topographical challenges along the pipeline can create flow-regime effects that can hinder production. The loss of temperature in a long subsea pipeline also creates challenges for fields that produce heavy oil because the oil viscosity in some cases increases dramatically at low temperatures, in addition to effective viscosities increasing because of oil and water emulsions. Other phenomena such as scale deposition, foaming, sand production, erosion, and corrosion must be considered and dealt with as well. Various smart-technology innovations for subsea oil and gas production contribute to reducing the risk of these flow-assurance issues. Some of them are described in this month’s selected SPE papers. A good example is as follows: When wells start to produce water, the operator needs to understand where the water is coming from and quantify volumes in order to start a mitigation program to avoid hydrate formation. This is one of the reasons why subsea multiphase flowmeters have become an essential feature in all new subsea fields. The most common remedy for flow-assurance problems is probably the use of chemical additives. A sensor technology that can directly determine the ratio between produced water and chemicals such as monoethylene glycol has been recently introduced in subsea production systems. This measurement enables the optimization of chemical-injection rates, thereby contributing to significant savings in capital expenditure (reduced design margins) and operational expenditure (reduced overdosage margins). Another effective way to prevent hydrates and wax is to keep the process temperature above critical limits by applying active flowline heating. New technologies for highly reliable and efficient subsea electrically heat-traced flowlines have recently been qualified, industrialized, and installed. Technologies as described here can play an important role in future subsea field developments. The recommended readings for this feature date back further back in time than usual, but are relevant to the theme of this year’s main selections. Recommended additional reading at OnePetro: www.onepetro.org. OTC 29232 Real-Time Subsea Hydrate Management in the World’s Longest Subsea Tieback by Christophe Vielliard, OneSubsea, a Schlumberger Company, et al. OTC 31078 Electrically Heated Trace Flowline on the Ærfugl Project—A Journey From Product Qualification to Offshore Campaign by Guy Mencarelli, Subsea 7, et al. SPE 195784 A New Flow-Assurance Strategy for the Vega Asset: Managing Hydrate and Integrity Risks on a Long Multiphase Flowline of a Norwegian Subsea Asset by Stephan Hatscher, Wintershall Norge, et al.


2016 ◽  
pp. 59-62
Author(s):  
A. A. Kononenko ◽  
K. A. Kononenko

The characteristic feature of the present-day development of oil industry of Russia is a transition of many developed fields to a stage of declining production of hydrocarbon raw materials. At a continuous growth of oil consumption the mineral resources are exhausted which determines a need in solving the major economic problem formulated in the document «Power strategy of Russia for the period till 2030», i.e. ensuring high volumes of oil and gas production and increase of the oil recovery factor by 35-37 %. Currently, search for and development of new technologies and implementation of advanced methods of enhanced oil recovery will lead to improvement of the efficiency of the Russian energy sector, in particular, the fields developed by JSC «Gazpromneft-NNG».


2021 ◽  
Vol 10 ◽  
pp. 62-71
Author(s):  
Thu Hương Nguyễn ◽  
Thị Thanh Lê Nguyễn

In recent years, the oil and gas industry has been facing objections from a public greatly concerned with the severe environmental impact caused by fossil fuels and their infrastructures, and strong demands from policy makers seeking to meet decarbonisation goals. Amidst a global energy transition, the future demand, finance, and social responsibilities of oil and gas companies are increasingly in question. One of the biggest problems of the industry is what are the “green” solutions for the late-life offshore oil and gas assets. Energy integration with reusing or repurposing oil and gas assets for new technologies could be a worthwhile investment strategy helping reduce carbon emission from oil and gas production as well as accelerating carbon capture and storage (CCS) and green hydrogen development to support the global decarbonisation. According to research, the late-life offshore oil and gas assets play an important role in energy integration while helping to have more opportunities to develop the new technologies that are in the early stages of development with high capex, necessary to make them more economically attractive and facilitate maximum energy integration. Reusing or repurposing oil and gas infrastructure can lead to 30% capex saving and million tons of CO2 pa emission reductions. In this paper, potential concepts of energy integration for offshore oil and gas assets are introduced, and some lessons learned and implications for reusing or repurposing late-life offshore assets for Vietnam are also presented.


Sign in / Sign up

Export Citation Format

Share Document