Radiomics-based Artificial Intelligence System to Predict Neoadjuvant Treatment Response in Rectal Cancer

Author(s):  
Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S229-S230
Author(s):  
Clinton J. Thurber ◽  
John Whitaker ◽  
Omar Kreidieh ◽  
Ahmad Halawa ◽  
Parinita A. Dherange ◽  
...  

2021 ◽  
Vol 160 (6) ◽  
pp. S-64-S-65
Author(s):  
Ethan A. Chi ◽  
Gordon Chi ◽  
Cheuk To Tsui ◽  
Yan Jiang ◽  
Karolin Jarr ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Delli Pizzi ◽  
Antonio Maria Chiarelli ◽  
Piero Chiacchiaretta ◽  
Martina d’Annibale ◽  
Pierpaolo Croce ◽  
...  

AbstractNeoadjuvant chemo-radiotherapy (CRT) followed by total mesorectal excision (TME) represents the standard treatment for patients with locally advanced (≥ T3 or N+) rectal cancer (LARC). Approximately 15% of patients with LARC shows a complete response after CRT. The use of pre-treatment MRI as predictive biomarker could help to increase the chance of organ preservation by tailoring the neoadjuvant treatment. We present a novel machine learning model combining pre-treatment MRI-based clinical and radiomic features for the early prediction of treatment response in LARC patients. MRI scans (3.0 T, T2-weighted) of 72 patients with LARC were included. Two readers independently segmented each tumor. Radiomic features were extracted from both the “tumor core” (TC) and the “tumor border” (TB). Partial least square (PLS) regression was used as the multivariate, machine learning, algorithm of choice and leave-one-out nested cross-validation was used to optimize hyperparameters of the PLS. The MRI-Based “clinical-radiomic” machine learning model properly predicted the treatment response (AUC = 0.793, p = 5.6 × 10–5). Importantly, the prediction improved when combining MRI-based clinical features and radiomic features, the latter extracted from both TC and TB. Prospective validation studies in randomized clinical trials are warranted to better define the role of radiomics in the development of rectal cancer precision medicine.


Author(s):  
Mohamed Hossameldin khalifa ◽  
Ahmed Samir ◽  
Ayman Ibrahim Baess ◽  
Sara Samy Hendawi

Abstract Background Vascular angiopathy is suggested to be the major cause of silent hypoxia among COVID-19 patients without severe parenchymal involvement. However, pulmonologists and clinicians in intensive care units become confused when they encounter acute respiratory deterioration with neither severe parenchymal lung involvement nor acute pulmonary embolism. Other radiological vascular signs might solve this confusion. This study investigated other indirect vascular angiopathy signs on CT pulmonary angiography (CTPA) and involved a novel statistical analysis that was performed to determine the significance of associations between these signs and the CT opacity score of the pathological lung volume, which is calculated by an artificial intelligence system. Results The study was conducted retrospectively, during September and October 2020, on 73 patients with critical COVID-19 who were admitted to the ICU with progressive dyspnea and low O2 saturation on room air (PaO2 < 93%). They included 53 males and 20 females (73%:27%), and their age ranged from 18 to 88 years (mean ± SD=53.3 ± 13.5). CT-pulmonary angiography was performed for all patients, and an artificial intelligence system was utilized to quantitatively assess the diseased lung volume. The radiological data were analyzed by three expert consultant radiologists to reach consensus. A low CT opacity score (≤10) was found in 18 patients (24.7%), while a high CT opacity score (>10) was found in 55 patients (75.3%). Pulmonary embolism was found in 24 patients (32.9%); three of them had low CT opacity scores. Four other indirect vasculopathy CTPA signs were identified: (1) pulmonary vascular enlargement (57 patients—78.1%), (2) pulmonary hypertension (14 patients—19.2%), (3) vascular tree-in-bud pattern (10 patients—13.7%), and (4) pulmonary infarction (three patients—4.1%). There were no significant associations between these signs and the CT opacity score (0.3205–0.7551, all >0.05). Furthermore, both pulmonary vascular enlargement and the vascular tree-in-bud sign were found in patients without pulmonary embolism and low CT-severity scores (13/15–86.7% and 2/15–13.3%, respectively). Conclusion Pulmonary vascular enlargement or, less commonly, vascular tree-in-bud pattern are both indirect vascular angiopathy signs on CTPA that can explain the respiratory deterioration which complicates COVID-19 in the absence of severe parenchymal involvement or acute pulmonary embolism.


Sign in / Sign up

Export Citation Format

Share Document