scholarly journals Hybrid Sorbents for Removal of Arsenic

Author(s):  
L. A. Zemskova ◽  
◽  
D. H. Shlyk ◽  
N. N. Barinov ◽  
◽  
...  

The paper analyzes data on the removal of arsenic by sorption methods using materials that have prospects for large-scale application in water treatment. These materials include transition metal oxides in the micro- and nano-dimensional form, including those in the composition of composite materials with inorganic matrices, or hybrid sorbents in the composition with polymer resins or natural biopolymers. Examples of the use of composite (hybrid) sorbents for the removal of arsenic from solutions with low concentrations (at the level of MPC) are given. The objective of this article was to sum the up-to-date information about the most important features of chitosan-containing and chitosan-carbon materials we developed in view their use in arsenic removal processes at low concentrations to concentrations that meet WHO requirements. The paper presents data on the sorption properties of Mo-containing activated carbon fibers and chitosan-carbon composite materials towards arsenic (V) when it is extracted from bidistilled and tap water under static and dynamic conditions. The factors of the different behavior of the sorbents depending on the form of a biopolymer deposited on the fiber and the stability of the sorbents during the sorption of arsenic are discussed.

2018 ◽  
Vol 251 ◽  
pp. 04061 ◽  
Author(s):  
Valeriy Telichenko ◽  
Vladimir Rimshin ◽  
Ekaterina Kuzina

In this article, a method is proposed for calculating the reinforcement of concrete ceiling slabs with carbon composite materials based on the finite element model in the computer program SCAD Office PC. This method allows the most complete and accurate representation to be obtained of the structure stress-strain state before and after reinforcement with composite materials. Therefore, it allows high-quality designing and reduces the cost conducting calculations and tests on a large scale. The design values are taken from the initial data, and include conclusions based on the results of analysis of the technical state of the structures and drawings from the calculation section of the CS (reinforced concrete structures).


2003 ◽  
Vol 3 (5-6) ◽  
pp. 303-310 ◽  
Author(s):  
S.-H. Yi ◽  
S. Ahmed ◽  
Y. Watanabe ◽  
K. Watari

Conventional arsenic removal processes have difficulty removing low concentrations of arsenic ion from water. Therefore, it is very hard to comply with stringent low levels of arsenic, such as below 10 μg/L. So, we have developed two arsenic removal processes which are able to comply with more stringent arsenic regulations. They are the MF membrane process combined with chemical sludge adsorption and NF membrane process equipped with the vibratory shear enhanced process (VSEP). In this paper, we examine the performance of these new processes for the removal of arsenic ion of a low concentration from water. We found that chemical sludge produced in the conventional rapid sand filtration plants can effectively remove As (V) ions of H2AsO4- and HAsO42- through anion exchange reaction. The removal efficiency of MF membrane process combined with chemical sludge adsorption increased to about 36%, compared to MF membrane alone. The strong shear force on the NF membrane surface produced by vibration on the VSEP causes the concentration polarization layer to thin through increased back transport velocity of particles. So, it can remove even dissolved constituents effectively. Therefore, As (V) ions such as H2AsO4- and HAsO42- can be removed. The concentration of As (V) ions decreased from 50 μg/L to below 10 μg/L and condensation factor in recirculating water increased up to 7 times by using NF membrane equipped with VSEP.


2006 ◽  
Vol 2006 (0) ◽  
pp. 11-12
Author(s):  
Ken TOGAWA ◽  
Akira KURUMADA ◽  
Yoshinobu MOTOHASHI ◽  
Hideo WATANABE ◽  
Naoaki YOSHIDA

MICC 90 ◽  
1991 ◽  
pp. 650-659
Author(s):  
V. Zh. Shemet ◽  
A. P. Pomytkin ◽  
T. G. Protsenko ◽  
P. I. Zoikin ◽  
V. A. Lavrenko

2021 ◽  
pp. 30-34
Author(s):  

The bearing capacity of a threaded pair made of spatially reinforced carbon-carbon composite materials (CCCM) with a 4DL reinforcement scheme in the temperature range from 20 to 2500 °C is experimentally determined. Recommendations are given for the design of CCCM threaded joints for operation at high temperatures. Keywords: carbon-carbon composite material, threaded joint, limit load, bearing capacity, threaded pair, high temperature. [email protected]


Sign in / Sign up

Export Citation Format

Share Document