Error estimates for the unilateral buckling load of a plate involving the membrane efforts consistency error

2008 ◽  
Vol 17 (8) ◽  
pp. 1003-1038 ◽  
Author(s):  
Mekki Ayadi
Author(s):  
Mekki Ayadi

The paper deals with error estimates for the unilateral buckling critical load of a thin plate in presence of an obstacle. The error on the membrane efforts tensor is taken into account. First, using the Mindlin’s plate model together with a finite elements scheme of degree one, an error estimate, depending on the mesh size h, is established. In order to validate this theoretical error estimate, some numerical experiments are presented. Second, using the Kirchhoff-Love’s plate model, an abstract error estimate is achieved. Its drawback is that it contains a hard term to evaluate.


2011 ◽  
Vol 21 (12) ◽  
pp. 2491-2521 ◽  
Author(s):  
CHRISTOPH ORTNER ◽  
HAO WANG

We derive a priori error estimates for three prototypical energy-based quasicontinuum (QC) methods: the local QC method, the energy-based QC method, and the quasi-nonlocal QC method. Our analysis decomposes the consistency error into modeling and coarsening errors. While previous results on estimating the modeling error exist, we present a new and simpler proof based on negative-norm estimates. Our stability analysis extends previous results on sharp stability estimates under homogeneous strain to the nonlinear setting. Finally, we present numerical experiments to illustrate the results of our analysis.


1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


2019 ◽  
Author(s):  
Mazen Albazzan ◽  
Brian Tatting ◽  
Ramy Harik ◽  
Zafer Gürdal ◽  
Adriana Blom-Schieber ◽  
...  

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1479-1485
Author(s):  
Anil L. Salunkhe ◽  
Prasanna M. Mujumdar

2020 ◽  
Vol 982 ◽  
pp. 201-206
Author(s):  
Jaksada Thumrongvut ◽  
Natthawat Pakwan ◽  
Samaporn Krathumklang

In this paper, the experimental study on the pultruded fiber-reinforced polymer (pultruded FRP) angle beams subjected to transversely eccentric load are presented. A summary of critical buckling load and buckling behavior for full-scale flexure tests with various span-to-width ratios (L/b) and eccentricities are investigated, and typical failure mode are identified. Three-point flexure tests of 50 pultruded FRP angle beams are performed. The E-glass fibre/polyester resin angle specimens are tested to examine the effect of span-to-width ratio of the beams on the buckling responses and critical buckling loads. The angle specimens have the cross-sectional dimension of 76x6.4 mm with span-to-width ratios, ranging from 20 to 40. Also, four different eccentricities are investigated, ranging from 0 to ±2e. Eccentric loads are applied below the horizontal flange in increments until beam buckling occurred. Based upon the results of this study, it is found that the load and mid-span vertical deflection relationships of the angle beams are linear up to the failure. In contrast, the load and mid-span lateral deflection relationships are geometrically nonlinear. The general mode of failure is the flexural-torsional buckling. The eccentrically loaded specimens are failed at critical buckling loads lower than their concentric counterparts. Also, the quantity of eccentricity increases as buckling load decreases. In addition, it is noticed that span-to-width ratio increases, the buckling load is decreased. The eccentric location proved to have considerable influence over the buckling load of the pultruded FRP angle beams.


Sign in / Sign up

Export Citation Format

Share Document