scholarly journals MODELING OF THE STATIC MODE OF THE RECTIFICATION PROCESS WITH THE IDENTIFICATION OF THE COMPOSITIONAND PROPERTIES OF OIL

2015 ◽  
pp. 109-116 ◽  
Author(s):  
A. V. Zatonskiy ◽  
L. G. Tugashova

Static model of the distillation column installation of primary oil refining is designed. The algorithm of BP-method in mathematical package Matlabis realized. For representing the composition of the oil, kind of curve fitting the true boiling point (CTI) of oil from the experimental data is determined.

TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 9-14
Author(s):  
RENMEI XU ◽  
CELESTE M. CALKINS

This work investigates the ink mileage of dry toners in electrophotography (EP). Four different substrates were printed on a dry-toner color production Xerox iGen3 EP press. The print layout contained patches with different cyan, magenta, yellow, and black tonal values from 10% to 100%. Toner amounts on cyan patches were measured using an analytical method. Printed patches and unprinted paper samples, as well as dry toners, were dissolved in concentrated nitric acid. The copper concentrations in the dissolved solutions were analyzed by a Zeeman graphite furnace atomic absorption spectrometer. Analytical results were calculated to determine the toner amounts on paper for different tonal values. Their corresponding reflection densities were also measured. All data were plotted with OriginPro® 8 software, and four mathematical models were used for curve fitting. It was found that the C-S model fitted the experimental data of the two uncoated papers better than the other three models. None of the four models fitted the experimental data of the two coated papers, while the linear model was found to fit the data well. Linear fitting was the best in the practical density region for the two coated papers. Ink mileage curves obtained from curve fitting were used to estimate how much ink was required to achieve a target density for each paper; hence, the ink mileage was calculated. The highest ink mileage was 3.39 times the lowest ink mileage. The rougher the paper surface, the higher the requirement for ink film weight, and the lower ink mileage. No correlation was found between ink mileage and paper porosity.


Author(s):  
Aleksey Malahanov

A variant of the implementation of the behavioral model of a linear voltage stabilizer in the Spice language is presented. The results of modeling in static mode are presented. The simulation results are compared with experimental data and technical description of the chip manufacturer.


1983 ◽  
Vol 48 (9) ◽  
pp. 2446-2453 ◽  
Author(s):  
Jan Linek

Isothermal vapour-liquid equilibrium data at 65, 73 and 80 °C and isobaric ones at 101.3 kPa were measured in the tetrachloromethane-sec-butyl alcohol system. A modified circulation still of the Gillespie type was used for the measurements. Under the conditions of measurement, the system exhibits positive deviations from Raoult's law and minimum boiling-point azeotropes. The experimental data were fitted to a number of correlation equations, the most suitable being the Wilson equation.


Author(s):  
Cyprian Suchocki ◽  
Stanisław Jemioło

AbstractIn this work a number of selected, isotropic, invariant-based hyperelastic models are analyzed. The considered constitutive relations of hyperelasticity include the model by Gent (G) and its extension, the so-called generalized Gent model (GG), the exponential-power law model (Exp-PL) and the power law model (PL). The material parameters of the models under study have been identified for eight different experimental data sets. As it has been demonstrated, the much celebrated Gent’s model does not always allow to obtain an acceptable quality of the experimental data approximation. Furthermore, it is observed that the best curve fitting quality is usually achieved when the experimentally derived conditions that were proposed by Rivlin and Saunders are fulfilled. However, it is shown that the conditions by Rivlin and Saunders are in a contradiction with the mathematical requirements of stored energy polyconvexity. A polyconvex stored energy function is assumed in order to ensure the existence of solutions to a properly defined boundary value problem and to avoid non-physical material response. It is found that in the case of the analyzed hyperelastic models the application of polyconvexity conditions leads to only a slight decrease in the curve fitting quality. When the energy polyconvexity is assumed, the best experimental data approximation is usually obtained for the PL model. Among the non-polyconvex hyperelastic models, the best curve fitting results are most frequently achieved for the GG model. However, it is shown that both the G and the GG models are problematic due to the presence of the locking effect.


2018 ◽  
Vol 6 (1) ◽  
pp. 18 ◽  
Author(s):  
Yoshitaka Matsuda ◽  
Takuma Yoshitake ◽  
Takenao Sugi ◽  
Satoru Goto ◽  
Takafumi Morisaki ◽  
...  

2021 ◽  
Vol 23 (3) ◽  
pp. 139-154
Author(s):  
Inna Banshchikova ◽  

Introduction. Reducing the level of damage accumulation during pressure treatment of materials at elevated temperatures in creep and close to superplasticity modes in the manufacture of parts can significantly increase its service life in the cold state. Finding temperature and power conditions leading to a reduction in damage of material during the production process and operation is an important task. The purposes of the work: 1) to show the possibility of using the Sosnin-Gorev creep and damage model for alloys with a non-monotonic dependence of strain at fracture on diagrams with creep curves; 2) to carry out comparative analysis of damage accumulation under conditions of uniaxial tension at constant stress and at constant strain rates for alloy with such a dependence. Research methods. Used scalar damage parameter is equated to the normalized deformation, i.e. to the ratio of the current strain to the fracture strain. To find the coefficients of relations creep and damage, the similarity of the creep curves in the normalized values “normalized strain – normalized time”, i.e. the presence of single normalized curve of damage accumulation is checked. The least squares method is used to approximate the experimental data. Numerical integration methods are used for comparative analysis of deformation modes. Results and discussion. Determination of the parameters of the creep and damage equations by the method of a single normalized curve is carried out on the example of experimental data for steel 12Kh18N10T (12Cr18Ni10Ti) at 850 °C, which has a minimum of fracture strain in diagrams with creep curves. Analysis of the static and kinematic modes of deformation for studied material showed that damage accumulation in both cases is practically the same for stresses close to the stress at which this minimum is reached. If the stresses are lower, then the lower level of damage accumulation will be in the kinematic mode; if the stresses above the minimum value, then the static mode will lead to a lower level of damage accumulation. Application. The obtained results can be useful when choosing rational modes of forming structural elements from alloys with a non-monotonic dependence of the fracture strain on stress, as well as in evaluating it for long-term strength during operation.


2009 ◽  
Vol 96 (1) ◽  
pp. 34-42 ◽  
Author(s):  
M.J. Polo-Corpa ◽  
S. Salcedo-Sanz ◽  
A.M. Pérez-Bellido ◽  
P. López-Espí ◽  
R. Benavente ◽  
...  

2021 ◽  
Author(s):  
Parsa Mozaffari ◽  
zachariah Steven baird ◽  
oliver järvik

Based on new experimental data for Kukersite shale oil, it is now possible to develop a property prediction model for the gasoline fraction of shale oil. Such a model was created based on estimation of the composition along with experimental boiling point and density data. First, correlations were developed to estimate the composition of a Kukersite shale gasoline sample based on the boiling point and density of narrow fractions. The estimated composition was then used with the PC-SAFT equation of state to calculate the properties of shale gasoline. To do so, correlations were developed to predict the PC-SAFT parameters of the various classes of compounds present in Kukersite shale gasoline. The utility of this model was shown by predicting the vapor pressure of various portions of the shale gasoline.


2021 ◽  
Author(s):  
Simon Mukwembi ◽  
Farai Nyabadza

Abstract A general perception among researchers is that boiling points, which is a key property in the optimization of lubricant performance, are difficult to predict successfully using a single-parameter model [5, 6]. In this contribution, we propose a new graph parameter which we call, for lack of better terminology , the conduction of a graph. We exploit the conduction of a graph to develop a single-parameter model for predicting the boiling point of any given alkane. The accuracy of our model compares favourably to the accuracy of experimental data in literature. Our results have significant implications on the estimation of boiling points of chemical compounds in the absence of experimental data.


1983 ◽  
Vol 48 (10) ◽  
pp. 2879-2887 ◽  
Author(s):  
Jan Linek

Isothermal vapour-liquid equilibrium data at 65, 73 and 80 °C and isobaric ones at 101.3 kPa were measured in the tetrachloromethane-n-butyl alcohol system. A modified circulation still of the Gilespie type was used for the measurements. Under the conditions of measurements, the system exhibits positive deviations from Raoult's law and minimum boiling-point azeotropes. The experimental data were fitted to a number of correlation equations. The best correlation was reached with the Wilson equation but the regression failed in some cases. Therefore the results for the 5th order Redlich-Kister equation are presented.


Sign in / Sign up

Export Citation Format

Share Document