BEHAVIORAL MODEL OF A LINEAR VOLTAGE STABILIZER IN THE SPICE LANGUAGE

Author(s):  
Aleksey Malahanov

A variant of the implementation of the behavioral model of a linear voltage stabilizer in the Spice language is presented. The results of modeling in static mode are presented. The simulation results are compared with experimental data and technical description of the chip manufacturer.

Author(s):  
Riccardo Caponetto ◽  
Salvatore Graziani ◽  
Emanuele Murgano

AbstractIn the paper, a fractional-order RLC circuit is presented. The circuit is realized by using a fractional-order capacitor. This is realized by using carbon black dispersed in a polymeric matrix. Simulation results are compared with the experimental data, confirming the suitability of applying this new device in the circuital implementation of fractional-order systems.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Author(s):  
Luis A. Varela J. ◽  
Calvin M. Stewart

Hastelloy X and stainless steel 304 are alloys widely used in industrial gas turbines components, petrochemical industry and energy generation applications; In the Pressure Vessel and Piping (PVP) industries they are used in nuclear and chemical reactors, pipes and valves applications. Hastelloy X and stainless steel 304 are favored for these types of applications where elevated temperatures are preferred for better systems’ efficiencies; they are favored due to its high strength and corrosion resistance at high temperature levels. A common characteristic of these alloys, is its rate-dependent mechanical behavior which difficult the prediction of the material response for design and simulation purposes. Therefore, a precise unified viscoplastic model capable to describe Hastelloy X and stainless steel 304 behaviors under a variety of loading conditions at high temperatures is needed to allow a better and less conservative design of components. Numerous classical unified viscoplastic models have been proposed in literature, to predict the inelastic behavior of metals under extreme environments. Based on Miller and Walker classical unified constitutive models a novel hybrid unified viscoplastic constitutive model is introduced in the present work, to describe the inelastic behavior caused by creep and fatigue effects at high temperature. The presented hybrid model consists of the combination of the best aspects of Miller and Walker model constitutive equations, with the addition of a damage rate equation which provides a description of the damage evolution and rupture prediction capabilities for Hastelloy X and stainless steel 304. A detailed explanation on the meaning of each material constant is provided, along with its impact on the hybrid model behavior. Material constants were calculated using the recently developed Material Constant Heuristic Optimizer (MACHO) software, to ensure the use of the optimal material constants values. This software uses the simulated annealing algorithm to determine the optimal material constants in a global surface, by comparing numerical simulations to an extensive database of experimental data. To validate the capabilities of the proposed hybrid model, numerical simulation results are compared to a broad range of experimental data at different stress levels and strain amplitudes; besides the consideration of two alloys in the present work, would demonstrate the model’s capabilities and flexibility to model multiple alloys behavior. Finally a quantitative analysis is provided to determine the percentage error and coefficient of determination between the experimental data and numerical simulation results to estimate the efficiency of the proposed hybrid model.


2011 ◽  
Vol 15 (1) ◽  
pp. 145-158 ◽  
Author(s):  
Enzo Benanti ◽  
Cesare Freda ◽  
Vincenzo Lorefice ◽  
Giacobbe Braccio ◽  
Vinod Sharma

This work deals with the simulation of an olive pits fed rotary kiln pyrolysis plant installed in Southern Italy. The pyrolysis process was simulated by commercial software CHEMCAD. The main component of the plant, the pyrolyzer, was modelled by a Plug Flow Reactor in accordance to the kinetic laws. Products distribution and the temperature profile was calculated along reactor's axis. Simulation results have been found to fit well the experimental data of pyrolysis. Moreover, sensitivity analyses were executed to investigate the effect of biomass moisture on the pyrolysis process.


2005 ◽  
Vol 495-497 ◽  
pp. 965-970
Author(s):  
A.A. Zisman ◽  
Nikolay Y. Zolotorevsky ◽  
N.Yu. Ermakova

A rate-independent polycrystal model, allowing for the shape and spatial coordination of neighboring constitutive crystals and for the plastic strain distribution among them, has been used to simulate the local texture evolution in an Al polycrystal under compression. The simulation results compare favourably to relevant experimental data and show the reorientation path of each crystal to strongly depend on orientations of its immediate neighbors.


2014 ◽  
Vol 529 ◽  
pp. 102-107
Author(s):  
Hai Bo Luo ◽  
Ying Yan ◽  
Xiang Ji Meng ◽  
Tao Tao Zhang ◽  
Zu Dian Liang

A 7.8m/s vertical drop simulate of a full composite fuselage section was conducted with energy-absorbing floor to evaluate the crashworthiness features of the fuselage section and to predict its dynamic response to dummies in future. The 1.52m diameter fuselage section consists of a high strength upper fuselage frame, one stiff structural floor and an energy-absorbing subfloor constructed of Rohacell foam blocks. The experimental data from literature [6] were analyzed and correlated with predictions from an impact simulation developed using the nonlinear explicit transient dynamic computer code MSC.Dytran. The simulated average acceleration did not exceed 13g, by contrast with experimental results, whose relative error is less than 11%. The numerical simulation results agree with experiments well.


Sign in / Sign up

Export Citation Format

Share Document