scholarly journals Chondrocytes Proliferation of Patients with Cartilage Lesions in Their Own Body for Use in Cartilage Tissue Engineering: Hypotheses on aNew Approach for the Proliferation of Autologous Chondrocytes

2019 ◽  
Vol 8 ◽  
pp. 1483
Author(s):  
Zahra Abpeikar ◽  
Mostafa Soleimannejad ◽  
Akram Alizadeh

Osteoarthritis is one of the most common chronic diseases, which have involved 250 million people around the world. One of the challenges in the field of cartilage tissue engineering is to provide an adequate source of chondrocytes to prevent changes in gene expression profile as a result of multiple passages.We hypothesized that by creating a low invasive lesion by scalpel or shear laser in the outer ear cartilage and stimulation of wound healing process, hyperplasia occurs and will provide an appropriate number of autologous chondrocytes for extraction and use in articular cartilage tissue engineering. Also, due to the effect of platelet-rich plasma and biomechanical forces in stimulating and accelerating of the repair process, these two factors can be used to achieve more desirable results.We describe a new approach to proliferate chondrocytes in the body. To evaluate this idea, various techniques of gene expression at the level of RNA or protein and animal experiments for histological studies can be used. Also, flowcytometry technique can be used to determine the cell viability and counting them.The use of autologous cell sources with minimal changes in gene expression profile can be promising in tissue engineering products. [GMJ.2019;8:e1483]

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Imam Rosadi ◽  
Karina Karina ◽  
Iis Rosliana ◽  
Siti Sobariah ◽  
Irsyah Afini ◽  
...  

Abstract Background Cartilage tissue engineering is a promising technique for repairing cartilage defect. Due to the limitation of cell number and proliferation, mesenchymal stem cells (MSCs) have been developed as a substitute to chondrocytes as a cartilage cell-source. This study aimed to develop cartilage tissue from human adipose-derived stem cells (ADSCs) cultured on a Bombyx mori silk fibroin scaffold and supplemented with 10% platelet-rich plasma (PRP). Methods Human ADSCs and PRP were characterized. A silk fibroin scaffold with 500 μm pore size was fabricated through salt leaching. ADSCs were then cultured on the scaffold (ADSC-SS) and supplemented with 10% PRP for 21 days to examine cell proliferation, chondrogenesis, osteogenesis, and surface marker expression. The messenger ribonucleic acid (mRNA) expression of type 2 collagen, aggrecan, and type 1 collagen was analysed. The presence of type 2 collagen confirming chondrogenesis was validated using immunocytochemistry. The negative and positive controls were ADSC-SS supplemented with 10% foetal bovine serum (FBS) and ADSC-SS supplemented with commercial chondrogenesis medium, respectively. Results Cells isolated from adipose tissue were characterized as ADSCs. Proliferation of the ADSC-SS PRP was significantly increased (p < 0.05) compared to that of controls. Chondrogenesis was observed in ADSC-SS PRP and was confirmed through the increase in glycosaminoglycans (GAG) and transforming growth factor-β1 (TGF-β1) secretion, the absence of mineral deposition, and increased surface marker proteins on chondrogenic progenitors. The mRNA expression of type 2 collagen in ADSC-SS PRP was significantly increased (p < 0.05) compared to that in the negative control on days 7 and 21; however, aggrecan was significantly increased on day 14 compared to the controls. ADSC-SS PRP showed stable mRNA expression of type 1 collagen up to 14 days and it was significantly decreased on day 21. Confocal analysis showed the presence of type 2 collagen in the ADSC-SS PRP and positive control groups, with high distribution outside the cells forming the extracellular matrix (ECM) on day 21. Conclusion Our study showed that ADSC-SS with supplemented 10% PRP medium can effectively support chondrogenesis of ADSCs in vitro and promising for further development as an alternative for cartilage tissue engineering in vivo.


Author(s):  
Hadeer A. Abbassy ◽  
Laila M. Montaser ◽  
Sherin M. Fawzy

<p class="abstract">Musculoskeletal medicine targets both cartilage regeneration and healing of soft tissues. Articular cartilage repair and regeneration is primarily considered to be due to its poor regenerative properties. Cartilage defects due to joint injury, aging, or osteoarthritis have low self-repair ability thus they are most often irreversible as well as being a major cause of joint pain and chronic disability. Unfortunately, current methods do not seamlessly restore hyaline cartilage and may lead to the formation of fibro- or continue hypertrophic cartilage. Deficiency of efficient modalities of therapy has invited research to combine stem cells, scaffold materials and environmental factors through tissue engineering. Articular cartilage tissue engineering aims to repair, regenerate, and hence improve the function of injured or diseased cartilage. This holds great potential and has evoked intense interest in improving cartilage therapy. Platelet-rich plasma (PRP) and/or stem cells may be influential for tissue repair as well as cartilage regenerative processes.  A great promise to advance current cartilage therapies toward achieving a consistently successful modality has been held for addressing cartilage afflictions. The use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology may be the best way to reach this objective via tissue engineering. A current and emergent approach in the field of cartilage tissue engineering is explained in this review for specific application. In the future, the development of new strategies using stem cells seeded in scaffolds and the culture medium supplemented with growth factors could improve the quality of the newly formed cartilage<span lang="EN-IN">.</span></p>


Author(s):  
Kalindu Perera ◽  
Ryan Ivone ◽  
Evelina Natekin ◽  
Cheryl. A. Wilga ◽  
Jie Shen ◽  
...  

Cartilage defects pose a significant clinical challenge as they can lead to joint pain, swelling and stiffness, which reduces mobility and function thereby significantly affecting the quality of life of patients. More than 250,000 cartilage repair surgeries are performed in the United States every year. The current gold standard is the treatment of focal cartilage defects and bone damage with nonflexible metal or plastic prosthetics. However, these prosthetics are often made from hard and stiff materials that limits mobility and flexibility, and results in leaching of metal particles into the body, degeneration of adjacent soft bone tissues and possible failure of the implant with time. As a result, the patients may require revision surgeries to replace the worn implants or adjacent vertebrae. More recently, autograft – and allograft-based repair strategies have been studied, however these too are limited by donor site morbidity and the limited availability of tissues for surgery. There has been increasing interest in the past two decades in the area of cartilage tissue engineering where methods like 3D bioprinting may be implemented to generate functional constructs using a combination of cells, growth factors (GF) and biocompatible materials. 3D bioprinting allows for the modulation of mechanical properties of the developed constructs to maintain the required flexibility following implantation while also providing the stiffness needed to support body weight. In this review, we will provide a comprehensive overview of current advances in 3D bioprinting for cartilage tissue engineering for knee menisci and intervertebral disc repair. We will also discuss promising medical-grade materials and techniques that can be used for printing, and the future outlook of this emerging field.


2020 ◽  
Vol 12 (1) ◽  
pp. 66-74
Author(s):  
Yuan-Jia He ◽  
Shuang Lin ◽  
Qiang Ao

Due to the unsatisfactory outcome of current clinical treatment, tissue engineering technology has become a promising approach for the treatment of cartilage defects. Typical cartilage tissue engineering uses seed cells that have been expanded in vitro to implant into various biomaterial scaffolds that are biocompatible and are gradually degraded and absorbed in the body, with or without physical/chemical factors mimicking the cartilage microenvironment, to regenerate cartilage tissue with similar biochemical and biomechanical properties to natural cartilage tissue. Therefore, we summarise the three aspects of seed cells, biological scaffolds, and factors/signals.


Sign in / Sign up

Export Citation Format

Share Document