Research Progress of Tissue-Engineered Cartilage in Repairing Cartilage Defects

2020 ◽  
Vol 12 (1) ◽  
pp. 66-74
Author(s):  
Yuan-Jia He ◽  
Shuang Lin ◽  
Qiang Ao

Due to the unsatisfactory outcome of current clinical treatment, tissue engineering technology has become a promising approach for the treatment of cartilage defects. Typical cartilage tissue engineering uses seed cells that have been expanded in vitro to implant into various biomaterial scaffolds that are biocompatible and are gradually degraded and absorbed in the body, with or without physical/chemical factors mimicking the cartilage microenvironment, to regenerate cartilage tissue with similar biochemical and biomechanical properties to natural cartilage tissue. Therefore, we summarise the three aspects of seed cells, biological scaffolds, and factors/signals.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Focaroli ◽  
Gabriella Teti ◽  
Viviana Salvatore ◽  
Isabella Orienti ◽  
Mirella Falconi

Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes thein vitrobehavior of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated within calcium/cobalt (Ca/Co) alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs) or bone morphogenetic proteins (BMPs)) to direct hADSC differentiation into cartilage-producing chondrocytes.


2020 ◽  
Vol 47 (5) ◽  
pp. 392-403 ◽  
Author(s):  
Min-Sook Kim ◽  
Hyung-Kyu Kim ◽  
Deok-Woo Kim

Severe cartilage defects and congenital anomalies affect millions of people and involve considerable medical expenses. Tissue engineering offers many advantages over conventional treatments, as therapy can be tailored to specific defects using abundant bioengineered resources. This article introduces the basic concepts of cartilage tissue engineering and reviews recent progress in the field, with a focus on craniofacial reconstruction and facial aesthetics. The basic concepts of tissue engineering consist of cells, scaffolds, and stimuli. Generally, the cartilage tissue engineering process includes the following steps: harvesting autologous chondrogenic cells, cell expansion, redifferentiation, <i>in vitro</i> incubation with a scaffold, and transfer to patients. Despite the promising prospects of cartilage tissue engineering, problems and challenges still exist due to certain limitations. The limited proliferation of chondrocytes and their tendency to dedifferentiate necessitate further developments in stem cell technology and chondrocyte molecular biology. Progress should be made in designing fully biocompatible scaffolds with a minimal immune response to regenerate tissue effectively.


Author(s):  
Kalindu Perera ◽  
Ryan Ivone ◽  
Evelina Natekin ◽  
Cheryl. A. Wilga ◽  
Jie Shen ◽  
...  

Cartilage defects pose a significant clinical challenge as they can lead to joint pain, swelling and stiffness, which reduces mobility and function thereby significantly affecting the quality of life of patients. More than 250,000 cartilage repair surgeries are performed in the United States every year. The current gold standard is the treatment of focal cartilage defects and bone damage with nonflexible metal or plastic prosthetics. However, these prosthetics are often made from hard and stiff materials that limits mobility and flexibility, and results in leaching of metal particles into the body, degeneration of adjacent soft bone tissues and possible failure of the implant with time. As a result, the patients may require revision surgeries to replace the worn implants or adjacent vertebrae. More recently, autograft – and allograft-based repair strategies have been studied, however these too are limited by donor site morbidity and the limited availability of tissues for surgery. There has been increasing interest in the past two decades in the area of cartilage tissue engineering where methods like 3D bioprinting may be implemented to generate functional constructs using a combination of cells, growth factors (GF) and biocompatible materials. 3D bioprinting allows for the modulation of mechanical properties of the developed constructs to maintain the required flexibility following implantation while also providing the stiffness needed to support body weight. In this review, we will provide a comprehensive overview of current advances in 3D bioprinting for cartilage tissue engineering for knee menisci and intervertebral disc repair. We will also discuss promising medical-grade materials and techniques that can be used for printing, and the future outlook of this emerging field.


Author(s):  
Gregory C. Thomas ◽  
Timothy P. Ficklin ◽  
James C. Barthel ◽  
Anna Asanbaeva ◽  
Eugene J.-M. A. Thonar ◽  
...  

Articular cartilage (AC) serves as the major load bearing material within synovial joints and provides a low friction and wear resistant interface. As an avascular tissue, AC lacks the ability to repair structural damage or degeneration. Thus, the need for replacement tissue was a motivating factor in the development of cartilage tissue engineering. Recently, a finite element model (FEM) of cartilage growth [1] has been developed to simulate various growth conditions such as in vitro (outside the body) tissue growth experiments. In order to validate growth laws used in the FEM, empirical measurements of AC properties (mechanical and biochemical) before and after in vitro growth are needed. The goal of this study is to design protocols to comprehensively quantify the biomechanical structure-function relations of AC.


2013 ◽  
Vol 1498 ◽  
pp. 59-66 ◽  
Author(s):  
Benjamin Holmes ◽  
Nathan J. Castro ◽  
Jian Li ◽  
Lijie Grace Zhang

ABSTRACTCartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension and surface nanoporosity were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter or suitable nanoporous structures. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce GAG and collagen synthesis that is indicative of chondrogenic differentiations of MSCs. Our novel scaffolds also performed better than controls, which make them promising for cartilage tissue engineering applications.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 962
Author(s):  
Monica Salamone ◽  
Salvatrice Rigogliuso ◽  
Aldo Nicosia ◽  
Marcello Tagliavia ◽  
Simona Campora ◽  
...  

Chondrocyte transplantation has been successfully tested and proposed as a clinical procedure aiming to repair articular cartilage defects. However, the isolation of chondrocytes and the optimization of the enzymatic digestion process, as well as their successful in vitro expansion, remain the main challenges in cartilage tissue engineering. In order to address these issues, we investigated the performance of recombinant collagenases in tissue dissociation assays with the aim of isolating chondrocytes from bovine nasal cartilage in order to establish the optimal enzyme blend to ensure the best outcomes of the overall procedure. We show, for the first time, that collagenase H activity alone is required for effective cartilage digestion, resulting in an improvement in the yield of viable cells. The extracted chondrocytes proved able to grow and activate differentiation/dedifferentiation programs, as assessed by morphological and gene expression analyses.


Author(s):  
Bin He ◽  
Xiao Yuan ◽  
Aiguo Zhou ◽  
Hua Zhang ◽  
Dianming Jiang

Owing to the limited regenerative capacity of cartilage tissue, cartilage repair remains a challenge in clinical treatment. Tissue engineering has emerged as a promising and important approach to repair cartilage defects. It is well known that material scaffolds are regarded as a fundamental element of tissue engineering. Novel biomaterial scaffolds formed by self-assembling peptides consist of nanofibre networks highly resembling natural extracellular matrices, and their fabrication is based on the principle of molecular self-assembly. Indeed, peptide nanofibre scaffolds have obtained much progress in repairing various damaged tissues (e.g. cartilage, bone, nerve, heart and blood vessel). This review outlines the rational design of peptide nanofibre scaffolds and their potential in cartilage tissue engineering.


2011 ◽  
Vol 236 (11) ◽  
pp. 1254-1262 ◽  
Author(s):  
Chuanying Xu ◽  
Zhonghui Zhang ◽  
Mingyuan Wu ◽  
Shunying Zhu ◽  
Jin Gao ◽  
...  

Autologous chondrocyte implantation (ACI) is widely used for the repair of cartilage defects. However, due to the lack of chondrocyte growth factor and dedifferentiation of the cultured primary chondrocytes, cell source has limited the clinical potential of ACI. Auricular cartilage is an attractive potential source of cells for cartilage tissue engineering. Here we demonstrated that recombinant human midkine (rhMK) significantly promoted proliferation of rat primary auricular chondrocytes cultured and passaged in monolayer, which was mediated by the activation of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Furthermore, rhMK attenuated the dedifferentiation of cultured chondrocytes by maintaining the expression of chondrocyte-specific matrix proteins during culture expansion and passage. Importantly, rhMK-expanded chondrocytes reserved their full chondrogenic potential and redifferentiated into elastic chondrocytes after being cultured in high density. The results suggest that rhMK may be used for the preparation of chondrocytes in cartilage tissue engineering.


Author(s):  
Benjamin Holmes ◽  
Nathan J. Castro ◽  
Jian Li ◽  
Lijie Grace Zhang

Cartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation that has thus far proven to be very promising is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce more chondrogenic differentiations of MSCs than controls, which make them promising for cartilage tissue engineering applications.


Biomaterials ◽  
2011 ◽  
Vol 32 (25) ◽  
pp. 5773-5781 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Quynhhoa T. Nguyen ◽  
Albert C. Chen ◽  
David L. Kaplan ◽  
Robert L. Sah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document