scholarly journals Supplemental methionine, choline, or taurine alter in vitro gene network expression of polymorphonuclear leukocytes from neonatal Holstein calves

2017 ◽  
Vol 100 (4) ◽  
pp. 3155-3165 ◽  
Author(s):  
M.K. Abdelmegeid ◽  
M. Vailati-Riboni ◽  
A. Alharthi ◽  
F. Batistel ◽  
J.J. Loor
1992 ◽  
Vol 67 (06) ◽  
pp. 660-664 ◽  
Author(s):  
Virgilio Evangelista ◽  
Paola Piccardoni ◽  
Giovanni de Gaetano ◽  
Chiara Cerletti

SummaryDefibrotide is a polydeoxyribonucleotide with antithrombotic effects in experimental animal models. Most of the actions of this drug have been observed in in vivo test models but no effects have been reported in in vitro systems. In this paper we demonstrate that defibrotide interferes with polymorphonuclear leukocyte-induced human platelet activation in vitro. This effect was not related to any direct interaction with polymorphonuclear leukocytes or platelets, but was due to the inhibition of cathepsin G, the main biochemical mediator of this cell-cell cooperation. Since cathepsin G not only induces platelet activation but also affects some endothelial cell functions, the anticathepsin G activity of defibrotide could help to explain the antithrombotic effect of this drug.


1993 ◽  
Vol 21 (1) ◽  
pp. 73-80
Author(s):  
Matteo Valentino ◽  
Francesca Monaco ◽  
Maria Antonietta Pizzichini ◽  
Mario Governa

The acute cytotoxicity of the first ten MEIC chemicals has been estimated by others in various cell lines. In the present investigation, isolated human polymorphonuclear leukocytes (PMN) from ten healthy non-smoking laboratory personnel were used to assess in vitro toxicity of the same chemicals. The cells were treated with different concentrations of the respective chemicals for three hours and their vitality and chemotaxis were tested. Vitality was measured by fluorescence microscopy after the addition of fluorescein diacetate and ethidium bromide. Living cells which took up and hydrolysed fluorescein diacetate, and dead cells, stained by ethidium bromide, were counted and the percentage of live cells was calculated. Locomotion stimulated by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (F-MLP), was measured in blind-well Boyden chambers and a chemotactic index was calculated. The results were mathematically transformed to produce a linear curve, and then fitted by the linear least squares procedure, from which LC50 and IC50 values were obtained by interpolation. All the chemicals decreased the vitality and inhibited the chemotaxis of the PMN. Obviously the chemotactic test was more sensitive than the vitality one. A correlation (r = 0.933) was found between vitality and chemotaxis inhibition. Spearman rank correlation analysis revealed significant correlations between our results and those from in vitro experiments conducted in other laboratories, as well as with data concerning mouse, rat and human lethal doses.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 216
Author(s):  
Hernan Baldassarre

The potential of laparoscopic ovum pick-up (LOPU) followed by in vitro embryo production (IVEP) as a tool for accelerated genetic programs in ruminants is reviewed in this article. In sheep and goats, the LOPU-IVEP platform offers the possibility of producing more offspring from elite females, as the procedure is minimally invasive and can be repeated more times and more frequently in the same animals compared with conventional surgical embryo recovery. On average, ~10 and ~14 viable oocytes are recovered by LOPU from sheep and goats, respectively, which results in 3–5 transferable embryos and >50% pregnancy rate after transfer. LOPU-IVEP has also been applied to prepubertal ruminants of 2–6 months of age, including bovine and buffalo calves. In dairy cattle, the technology has gained momentum in the past few years stemming from the development of genetic marker selection that has allowed predicting the production phenotype of dairy females from shortly after birth. In Holstein calves, we obtained an average of ~22 viable oocytes and ~20% transferable blastocyst rate, followed by >50% pregnancy rate after transfer, declaring the platform ready for commercial application. The present and future of this technology are discussed with a focus on improvements and research needed.


Author(s):  
John E. Repine ◽  
John R. Hoidal ◽  
Gregory D. Beall ◽  
Fred L. Rasp ◽  
Dennis P. Clifford ◽  
...  

1966 ◽  
Vol 124 (4) ◽  
pp. 733-752 ◽  
Author(s):  
Charles G. Cochrane ◽  
Barbara S. Aikin

Vascular basement membrane was disrupted in the presence of polymorphonuclear leukocytes (PMN's) during two immunologic reactions: The Arthus phenomenon and the reaction to locally injected antibody to vascular basement membrane. This disruption was evidenced by (a) the inability of the basement membrane to retain circulating carbon, by (b) loss of antigenic constituents, and by (c) electron microscopic observation showing actual gaps in the structure of the vascular basement membrane. The factors within PMN's responsible for damage to isolated glomerular basement membrane in vitro were found by isolation procedures to be cathepsins D and E. Cationic proteins of PMN's were separable from the cathepsins. While inducing vascular permeability upon injection, these basic proteins failed to inflict the severe damage to the basement membrane observed in Arthus and antibasement membrane reactions. It is concluded that the full expression of these immunologic lesions requires destruction of the basement membrane possibly brought about by cathepsins D and E. Some of the physicochemical properties of these pathologically active leukocytic factors are given.


2009 ◽  
Vol 16 (6) ◽  
pp. 806-810 ◽  
Author(s):  
Nikkol Melnick ◽  
Gowrisankar Rajam ◽  
George M. Carlone ◽  
Jacquelyn S. Sampson ◽  
Edwin W. Ades

ABSTRACT P4, a 28-amino-acid peptide, is a eukaryotic cellular activator that enhances specific in vitro opsonophagocytic killing of multiple bacterial pathogens. In a previous study, we successfully recreated this phenomenon in mice in vivo by using a two-dose regimen of P4 and pathogen-specific antibodies, which significantly reduced moribundity in mice. For the present study, we hypothesized that the inclusion of a low-dose antibiotic would make it possible to treat the infected mice with a single dose containing a mixture of P4 and a pathogen-specific antibody. A single dose consisting of P4, intravenous immunoglobulin (IVIG), and ceftriaxone effectively reduced moribundity compared to that of untreated controls (n = 10) by 75% (P < 0.05) and rescued all (10 of 10) infected animals (P < 0.05). If rescued animals were reinfected with Streptococcus pneumoniae and treated with a single dose containing P4, IVIG, and ceftriaxone, they could be rerescued. This observation of the repeated successful use of P4 combination therapy demonstrates a low risk of tolerance development. Additionally, we examined the polymorphonuclear leukocytes (PMN) derived from infected mice and observed that P4 enhanced in vitro opsonophagocytic killing (by >80% over the control level; P < 0.05). This finding supports our hypothesis that PMN are activated by P4 during opsonophagocytosis and the recovery of mice from pneumococcal infection. P4 peptide-based combination therapy may offer an alternative and rapid immunotherapy to treat fulminant pneumococcal infection.


2002 ◽  
Vol 282 (4) ◽  
pp. C917-C925 ◽  
Author(s):  
Masako Yasuda ◽  
Shunichi Shimizu ◽  
Kyoko Ohhinata ◽  
Shinji Naito ◽  
Shogo Tokuyama ◽  
...  

Ets-1, which stimulates metalloproteinase gene transcription, has a key role in angiogenesis. We first examined whether activated polymorphonuclear leukocytes (PMNs) enhanced angiogenesis through the induction of Ets-1. Addition of activated PMNs to endothelial cells stimulated both in vitro angiogenesis in collagen gel and Ets-1 expression. Both angiogenesis and Ets-1 expression induced by PMNs were reduced by ets-1 antisense oligonucleotide, suggesting that Ets-1 is an important factor in PMN-induced angiogenesis. Although intercellular adhesion molecule (ICAM)-1 and E-selectin are involved in PMN-induced angiogenesis, the mechanisms underlying their roles in angiogenesis have yet to be elucidated. PMN-induced Ets-1 expression was reduced by a monoclonal antibody against ICAM-1 but not E-selectin despite the inhibition of PMN-induced angiogenesis by both antibodies. Moreover, the stimulation of angiogenesis by H2O2without PMNs was inhibited by a monoclonal antibody to E-selectin but not ICAM-1. These findings suggested that ICAM-1 in endothelial cells may act as a signaling receptor to induce Ets-1 expression, whereas E-selectin seems to function in the formation of tubelike structures in vascular endothelial cell cultures.


Sign in / Sign up

Export Citation Format

Share Document