scholarly journals Multi-year evaluation of stocking rate and animal genotype on milk production per hectare within intensive pasture-based production systems

2018 ◽  
Vol 101 (3) ◽  
pp. 2448-2462 ◽  
Author(s):  
E.L. Coffey ◽  
L. Delaby ◽  
C. Fleming ◽  
K.M. Pierce ◽  
B. Horan
2010 ◽  
Vol 1 (1) ◽  
pp. 148-148 ◽  
Author(s):  
B. McCarthy ◽  
L. Delaby ◽  
K.M. Pierce ◽  
F. Journot ◽  
B. Horan

animal ◽  
2011 ◽  
Vol 5 (5) ◽  
pp. 784-794 ◽  
Author(s):  
B. McCarthy ◽  
L. Delaby ◽  
K.M. Pierce ◽  
F. Journot ◽  
B. Horan

2010 ◽  
Vol 50 (7) ◽  
pp. 705 ◽  
Author(s):  
R. G. Chataway ◽  
D. G. Barber ◽  
M. N. Callow

Dairy farms in Queensland were stratified by six regions, three levels of enterprise size (0.25–0.69, 0.7–1.39 or >1.4 ML milk/year) and two rainfall zones (<1000 and >1000 mm/year). Thirteen percent of farmers (89 farms) were surveyed using a prepared questionnaire to ascertain the current production systems, forage management practices and preferences for extension services. Herd size, dairy area, milk production per cow, the use of cropping, pit silage, concentrate input and irrigation input all increased (P < 0.05) with larger enterprises. At the same time the stocking rate on high milk volume farms was almost twice that on smaller farms. The drier zone (<1000 mm/year) was associated with lower stocking rate, higher per cow production and a greater emphasis on cropping and feedpad usage (P < 0.05). The importance of enterprise growth through intensification of the existing farm land resource base is indicated through these findings. Apart from ration formulation, processes used to manage cropping land, irrigation and grazing were primarily based on tradition or intuition. In valuing extension activities, farmers across all enterprise sizes were in general agreement that information products warranted only a small investment. As enterprise size increased, a more individualised and focussed extension service, delivered through targeted discussion groups and personal coaches was favoured.


1977 ◽  
Vol 28 (1) ◽  
pp. 133 ◽  
Author(s):  
JP Langlands

Grass and milk consumption and liveweight changes of lambs grazed at stocking rates ranging from 9 to 35 sheep/ha were measured during a 105 day lactation. Grass consumption and wool production of their mothers and of similar ewes without lambs were also determined. The forage and total organic matter intakes of the lamb increased with time while milk consumption declined; all three variables were negatively correlated with stocking rate. The intake of the ewe and its liveweight gain were not sensitive to increasing stocking rate, but wool production declined at higher stocking rates. The maintenance requirement of the ewes was estimated to be 218 kJ metabolizable energy/kg liveweight, and the efficiency with which metabolizable energy was utilized for milk production was 66%. Lactation increased the intake of the ewe but reduced its wool production.


1999 ◽  
Vol 1999 ◽  
pp. 76-76
Author(s):  
C.P. Ferris ◽  
F.J. Gordon ◽  
D.C. Patterson ◽  
C.S. Mayne

In a previous short term study, Ferris et al. (1997) demonstrated that similar levels of nutrient intake and animal performance could be obtained by either increasing silage feed value and reducing concentrate feed level, or by reducing silage feed value and increasing concentrate feed level. The principles established in this study were incorporated into this trial to examine two systems of milk production over a full lactation, including both the winter and grazing periods.Forty high genetic merit dairy cows (PTA95 fat + protein = 38.2 kg), in their second or subsequent lactation, were used in a continuous design full lactation study. Animals had a mean calving date of 1 November and were allocated to one of two systems of milk production, HF or HC, within 36 hours of calving. During the winter, animals on system HF were offered a silage with high feed value characteristics, supplemented with 5.5 kg of concentrate (crude protein concentration of 280 g/kg DM) through an out-of-parlour feeding system.


2010 ◽  
Vol 50 (4) ◽  
pp. 246 ◽  
Author(s):  
R. G. Chataway ◽  
R. G. Walker ◽  
M. N. Callow

Farmlets, each of 20 cows, were established to field test five milk production systems and provide a learning platform for farmers and researchers in a subtropical environment. The systems were developed through desktop modelling and industry consultation in response to the need for substantial increases in farm milk production following deregulation of the industry. Four of the systems were based on grazing and the continued use of existing farmland resource bases, whereas the fifth comprised a feedlot and associated forage base developed as a greenfield site. The field evaluation was conducted over 4 years under more adverse environmental conditions than anticipated with below average rainfall and restrictions on irrigation. For the grazed systems, mean annual milk yield per cow ranged from 6330 kg/year (1.9 cows/ha) for a herd based on rain-grown tropical pastures to 7617 kg/year (3.0 cows/ha) where animals were based on temperate and tropical irrigated forages. For the feedlot herd, production of 9460 kg/cow.year (4.3 cows/ha of forage base) was achieved. For all herds, the level of production achieved required annual inputs of concentrates of ~3 t DM/animal and purchased conserved fodder from 0.3 to 1.5 t DM/animal. This level of supplementary feeding made a major contribution to total farm nutrient inputs, contributing 50% or more of the nitrogen, phosphorus and potassium entering the farming system, and presents challenges to the management of manure and urine that results from the higher stocking rates enabled. Mean annual milk production for the five systems ranged from 88 to 105% of that predicted by the desktop modelling. This level of agreement for the grazed systems was achieved with minimal overall change in predicted feed inputs; however, the feedlot system required a substantial increase in inputs over those predicted. Reproductive performance for all systems was poorer than anticipated, particularly over the summer mating period. We conclude that the desktop model, developed as a rapid response to assist farmers modify their current farming systems, provided a reasonable prediction of inputs required and milk production. Further model development would need to consider more closely climate variability, the limitations summer temperatures place on reproductive success and the feed requirements of feedlot herds.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Lelia Murgia ◽  
Giuseppe Todde ◽  
Maria Caria ◽  
Antonio Pazzona

Dairy farming is constantly evolving towards more intensive levels of mechanization and automation which demand more energy consumption and result in higher economic and environmental costs. The usage of fossil energy in agricultural processes contributes to climate change both with on-farm emissions from the combustion of fuels, and by off-farm emissions due to the use of grid power. As a consequence, a more efficient use of fossil resources together with an increased use of renewable energies can play a key role for the development of more sustainable production systems. The aims of this study were to evaluate the energy requirements (fuels and electricity) in dairy farms, define the distribution of the energy demands among the different farm operations, identify the critical point of the process and estimate the amount of CO2 associated with the energy consumption. The inventory of the energy uses has been outlined by a partial Life Cycle Assessment (LCA) approach, setting the system boundaries at the farm level, from cradle to farm gate. All the flows of materials and energy associated to milk production process, including crops cultivation for fodder production, were investigated in 20 dairy commercial farms over a period of one year. Self-produced energy from renewable sources was also accounted as it influence the overall balance of emissions. Data analysis was focused on the calculation of energy and environmental sustainability indicators (EUI, CO2-eq) referred to the functional units. The production of 1 kg of Fat and Protein Corrected Milk (FPCM) required on average 0.044 kWhel and 0.251 kWhth, corresponding to a total emission of 0.085 kg CO2-eq). The farm activities that contribute most to the electricity requirements were milk cooling, milking and slurry management, while feeding management and crop cultivation were the greatest diesel fuel consuming operation and the largest in terms of environmental impact of milk production (73% of energy CO2-eq emissions). The results of the study can assist in the development of dairy farming models based on a more efficient and profitable use of the energy resources.


2004 ◽  
Vol 78 (1) ◽  
pp. 169-178 ◽  
Author(s):  
M. Linnane ◽  
B. Horan ◽  
J. Connolly ◽  
P. O'Connor ◽  
F. Buckley ◽  
...  

AbstractA comparative study of grazing behaviour, herbage intake and milk production was conducted using three strains of Holstein-Friesian (HF) heifer : 33 high production North American (HP), 33 high durability North American (HD) and 33 New Zealand (NZ) animals. Heifers were assigned, within strain, to one of three grass-based feeding systems : (1) the Moorepark (control) system (MP), (2) a high concentrate system (HC), (3) a high stocking rate system (HS). Strain of HF had no significant effect on grazing time or number of grazing bouts. The NZ strain had longer grazing bouts (P< 0.01) and spent a lower proportion of time ruminating (P< 0.05) than both the HP and HD strains. There was a significant strain ✕ feeding system interaction for biting rate. The biting rate of the NZ strain was reduced in the HC system. Biting rates in the HS feeding system were significantly higher (P< 0.001) than in the MP system. Heifers on HC had shorter grazing time (P< 0.01) with grazing bouts of shorter duration (P< 0.01). Increasing stocking rate (HS) decreased the proportion of time ruminating (P< 0.001) and tended to shorten grazing bouts (P = 0.06). The HP strain had higher (P< 0.05) herbage and total dry matter (DM) intakes than the NZ strain, while the HD strain was intermediate. Concentrate supplementation reduced (P< 0.001) herbage DM intake but increased (P< 0.001) total DM intake. The reduction of herbage DM intake per kg of concentrate DM intake (substitution rate) was greater for the NZ than the HP strain. The HP produced significantly higher milk, fat, protein and lactose yields than the NZ, while the HD strain was intermediate. The milk fat content of the NZ was higher than both the HP and HD strains, while the protein content was higher than the HP strain. Concentrate supplementation (HC v . MP) significantly increased yields of milk and milk components. Milk production responses to the HC system were much greater with the HP than the NZ strain. Increasing stocking rate (MP v . HS) significantly decreased milk protein yield. The results indicate that the choice of strain of HF may depend on the feeding system.


1985 ◽  
Vol 25 (3) ◽  
pp. 505 ◽  
Author(s):  
TM Davison ◽  
RT Cowan ◽  
RK Shepherd ◽  
P Martin

A 3-year experiment was conducted at Kairi Research Station on the Atherton Tablelands, Queensland, to determine the effects of stocking rate and applied nitrogen fertilizer on the pasture yield and composition, diet selection by cows, and soil fertility of Gatton panic (Panicum maximum cv. Gatton) pastures. Thirty-two Friesian cows were used in a 4x2 factorial design: four stocking rates (2.0, 2.5, 3.0 and 3.5 cows/ha), each at two rates of fertilizer application 200 and 400 kg N/ha.year. The higher rate of fertilization increased the pasture green dry matter on offer at all samplings (P < 0.01); the increase ranged from 1 106 kg/ha in summer to 548 kg/ha in spring. Green dry matter decreased ( P< 0.0 1) with increasing stocking rate, with mean yields of 3736 and 2384 kg/ha at 2.0 and 3.5 cows/ha, respectively. Weed yields increased over the 3 years at the higher stocking rates for pastures receiving 200 kg N/ha.year. The crude protein content of leaf and stem increased with increasing stocking rate and amount of applied nitrogen fertilizer. Values ranged from 12.1 to 26.5% of dry matter (DM) in leaf and from 3.7 to 13.8% DM in stem. In leaf, sodium concentration (range 0.05-0.20% DM) was increased, while phosphorus concentration (range 0.21-0.44% DM) was decreased by the higher rate of fertilizer application. Plant sodium and phosphorus levels were inadequate for high levels of milk production. Dietary leaf content and crude protein contents were consistently increased by both a reduced stocking rate, and the higher rate of fertilization. Cows were able to select for leaf and at the lowest stocking rate, leaf in the diet averaged 38%; while the leaf content of the pasture was 20%. Dietary leaf content ranged from 38 to 57% in summer and from 11 to 36% in winter. Dietary crude protein ranged from 13 to 15% in summer and from 7 to 11% in winter and was positively correlated with pasture crude protein content and dietary leaf percentage. Soil pH decreased (P<0.05) from an overall mean of 6.3 in 1976 to 6.1 at 200 N and 5.8 at 400 N in 1979. Soil phosphorus status remained stable, while calcium and magnesium levels were lower (P<0.01) after 3 years.


Sign in / Sign up

Export Citation Format

Share Document