scholarly journals An evaluation of the effectiveness of a chemical additive based on sodium benzoate, potassium sorbate, and sodium nitrite on the fermentation and aerobic stability of corn silage

2018 ◽  
Vol 101 (7) ◽  
pp. 5949-5960 ◽  
Author(s):  
Limin Kung ◽  
Megan L. Smith ◽  
Erica Benjamim da Silva ◽  
Michelle C. Windle ◽  
Thiago C. da Silva ◽  
...  
2020 ◽  
Vol 98 (8) ◽  
Author(s):  
Érica B da Silva ◽  
Rebecca M Savage ◽  
Amy S Biddle ◽  
Stephanie A Polukis ◽  
Megan L Smith ◽  
...  

Abstract We evaluated the effects of a chemical additive on the microbial communities, fermentation profile, and aerobic stability of whole-plant corn silage with or without air stress during storage. Whole-plant corn was either untreated or treated with a chemical additive containing sodium benzoate, potassium sorbate, and sodium nitrite at 2 or 3 liters/t of fresh forage weight. Ten individually treated and replicated silos (7.5 liters) were made for each treatment. Half of the silos remained sealed throughout a 63-d storage period, and the other half was subjected to air stress for 2 h/wk. The composition of the bacterial and fungal communities of fresh forage and silages untreated or treated with 2 liters/t of fresh forage weight was analyzed by Illumina Miseq sequencing. Treated silage had greater (P < 0.05) aerobic stability than untreated, even when subjected to air stress during storage, but the numbers of yeasts culturable on selective agar were not affected. However, the additive reduced the relative abundance (RA) of the lactating-assimilating yeast Candida tropicalis (P < 0.01). In air-stressed silages, untreated silage had a greater (P < 0.05) RA of Pichia kudriavzevii (also a lactate assimilator) than treated silage, whereas treated silage was dominated by Candida humilis, which is usually unable to assimilate lactate or assimilates it slowly. The additive improved the aerobic stability by specifically preventing the dominance of yeast species that can consume lactate and initiate aerobic spoilage. To the best of our knowledge, this is the first work that identifies the specific action of this additive on shifting the microbial communities in corn silage.


2008 ◽  
Vol 65 (6) ◽  
pp. 589-594 ◽  
Author(s):  
André de Faria Pedroso ◽  
Luiz Gustavo Nussio ◽  
Daniele Rebouças Santana Loures ◽  
Solidete de Fátima Paziani ◽  
José Leonardo Ribeiro ◽  
...  

Utilization of sugarcane Saccharum officinarum L. silage is increasing in Brazil but intensive ethanol production during fermentation reduces forage quality. This experiment aimed to evaluate the effects of additives on fermentation and aerobic stability of sugarcane silages produced in minisilos. Treatments were (fresh basis): untreated silage (control), urea (5.0 g kg-1), sodium benzoate (1.0 g kg-1), potassium sorbate (0.3 g kg-1), Lactobacillus plantarum (1 x 10(6) cfu g-1), and Lactobacillus buchneri (3.64 x 10(5) cfu g-1). At the 94th day after ensilage, ethanol concentration was lower in urea, benzoate, sorbate and L. buchneri supplemented silages and higher in L. plantarum inoculated silage, as compared to control. Urea and benzoate treated silages showed the highest and L. plantarum treated silage the lowest in vitro dry matter digestibility. Effluent production was higher in the urea treated silage. Inoculation with L. buchneri reduced 50% ethanol production as compared to control. Urea and L. buchneri reduced yeast count. Aerobic stability was enhanced by L. buchneri and benzoate. Sodium benzoate and L. buchneri were the most promising additives, improving both silage fermentation and aerobic stability; inoculants containing L. plantarum can be deleterious to fermentation and conservation of sugarcane silages.


2010 ◽  
Vol 5 (4) ◽  
pp. 491-495
Author(s):  
Dragana Stanojević ◽  
Ljiljana Čomić ◽  
Olgica Stefanović

AbstractThe aim of the present study is to investigate the antibacterial activity of Salvia officinalis L. aqueous extracts and its synergistic action with preservatives sodium nitrite, sodium benzoate and potassium sorbate in vitro against selected food spoiling bacteria. Synergy was assessed by the checkerboard assay method and quantitatively represented by the FIC index. Synergistic action was established for aqueous extract/ sodium benzoate, aqueous extract/ potassium sorbate, aqueous extract/ sodium nitrite combinations. Synergy was detected in relation to: Agrobacterium tumefaciens, Bacillus subtilis and Proteus sp. Synergy was established at plant extract and preservative concentrations corresponding up to 1/8 MIC values.


2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;


2010 ◽  
Vol 62 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Dragana Stanojevic ◽  
Ljiljana Comic ◽  
Olgica Stefanovic ◽  
Slavica Solujic-Sukdolak

The aim of this work was to investigate the antibacterial activity of aqueous extracts of the species Salvia officinalis L. and its synergistic action with the preservatives sodium nitrite, sodium benzoate and potassium sorbate in vitro against selected food spoiling bacteria. Synergism was assessed by the checkerboard assay method and quantitatively represented by the FIC index. Synergistic action was established for aqueous extract/sodium benzoate, aqueous extract/potassium sorbate, aqueous extract/sodium nitrite combinations. Synergism was detected in relation to: Agrobacterium tumefaciens, Bacillus subtilis and Proteus sp. Synergism was established at plant extract and preservative concentrations corresponding up to 1/8 MIC values. <br><br><b><font color="red">Detected autoplagiarism. Link to the Editorial Decision <u><a href="http://dx.doi.org/10.2298/ABS1004251U">10.2298/ABS1004251U</a></u></font></b><br>


Sign in / Sign up

Export Citation Format

Share Document