scholarly journals Using Embryo Sexing Within Closed Mixed Multiple Ovulation and Embryo Transfer Schemes for Selection on Dairy Cattle

1991 ◽  
Vol 74 (11) ◽  
pp. 3973-3984 ◽  
Author(s):  
J.J. Colleau
1991 ◽  
Vol 52 (1) ◽  
pp. 33-47 ◽  
Author(s):  
J. Ruane

ABSTRACTThe importance of family sizes in adult multiple ovulation and embryo transfer (MOET) nucleus schemes with discrete generations of single trait selection was examined using Monte Carlo simulation. Two areas were investigated. Firstly, the number of sons and daughters per dam was varied in schemes using hierarchical mating designs. With four or eight sires and 32 dams selected, increasing the number of sons per dam from one up to four achieved 1 to 8% higher rates of response but at the expense of increased variation in response and 10 to 56% higher rates of inbreeding. With four or eight sires and 16, 32 or 64 dams selected, the number of daughters was set to two, four or eight (with one son per dam in each case). For schemes transferring equal numbers of embryos, responses were lower with two daughters per dam but were fairly similar with four or eight daughters per dam while inbreeding rates increased as fewer sires and dams were selected. Secondly, the effects of variation in family sizes due to biological factors and chance were investigated with eight sires and 32 dams selected and with hierarchical or factorial (two or four sires per dam) mating designs. When all selected cows yielded embryos, changes in family sizes due to differences in sex ratios, in survival rates of embryos to selection and to variation in the number of embryos per donor reduced response by 1 to 4%. However, when 20% or 33% of the superovulated females yielded no embryos, thus requiring the use of genetically inferior replacements, response was reduced by a further 9 to 13%


1983 ◽  
Vol 36 (3) ◽  
pp. 341-353 ◽  
Author(s):  
F. W. Nicholas ◽  
C. Smith

ABSTRACTPossibilities for increased rates of genetic change in dairy cattle through embryo transfer and embryo splitting are examined, using the multiple ovulation and embryo transfer systems previously proposed. These involve embryo transfer from 1-year-old females (juvenile scheme, generation interval 1·8 years) and from females after 1 lactation (adult scheme, generation interval 3·7 years), with use of males at similar ages. Though selection is less accurate than in conventional progeny testing, the annual rate of genetic improvement can be increased, and even doubled. If the number of transfers is restricted andm the inbreeding rate is limiting, the adult scheme for both sexes is preferred. A scheme with 1 024 transfers per year and 512 females milk-recorded per year will sustain a rate of genetic improvement some 30% above that possible by a conventional national progeny-testing programme. Because of the relatively small number of animals involved, it is argued that greater control over recording, breeding and selection should be possible, leading to a larger proportion of the possible genetic gains being realized in practice. Other advantages, and disadvantages of these systems, and their integration in dairy cattle improvement are discussed.


2008 ◽  
Vol 69 (1) ◽  
pp. 124-128 ◽  
Author(s):  
O. Dochi ◽  
K. Takahashi ◽  
T. Hirai ◽  
H. Hayakawa ◽  
M. Tanisawa ◽  
...  
Keyword(s):  

2010 ◽  
Vol 22 (1) ◽  
pp. 301
Author(s):  
B. G. Moura ◽  
J. Almeida ◽  
F. L. Lima ◽  
G. Balbi ◽  
R. Calmerani ◽  
...  

The aim of the work was to study the effects of year period, technical team, breed, beef cattle and dairy cattle on the pregnancy rates in fresh embryos used in bovine transfer of IVF programs. The study was carried out at the fertilization laboratory In Vitro Nyltta Britto de Carvalho, in partnership with In Vitro Brazil, located at the Boa Vista farm, Barra do Pirai, during August 2007 to September 2008, seeking subsidies to improve the use of the technique in the field. During that period, aspirations and inovulations in 3 different periods I (August to December), II (January to April), and III (May to September) were carried out. The jobs were accomplished by 9 technical teams (A, B, C, D, E, F, G, H, and I) rendering services to the laboratory, by working with 2 beef breeds (Brahman and Nelore) and 3 dairy breeds (Gir, Girolando, and Holstein). The different breed receivers were synchronized, and in general, from 6 to 8 days after heat, they received embryo transfer, the cervical way, under low epidural anesthesia, where each female received 1 fresh embryo of IVF. All cows were submitted to gestation diagnosis by rectal palpation and ultrasonography, in general, 42 days after embryo transfer. The numbers of embryo transferred and pregnancy rates were submitted to the chi-square test, which presented significant differences (P < 0.05). There were pregnancy rates of 36.25%a (n = 960), 39.83%a (n = 1180), and 32.59%b (n = 919) in the I, II, and III periods, respectively. Among the 9 technical teams, there were verified pregnancy rates (%) of 33.51d (n = 1313), 30.30d (n = 330), 35.00cd (n = 405), 39.24cd (n = 1060), 59.25a (n = 7), 33.33d (n = 24), 53.57bc (n = 28), 43.31c (n = 157), and 58.33ab (n = 12) for A, B, C, D, E, F, G, H, and I teams, respectively. Among breeds there were rates (%) of 36.89ab (n = 412), 34.68b (n = 1286), 35.13ab (n = 74), 38.94a (n = 1140), and 37.80ab (n = 82) for Brahman, Nelore, Gir, Girolando, and Holstein, respectively. In the study, pregnancy rates (%) of 35.21b (n = 1698) in beef cattle and 38.65a (n = 1296) in dairy cattle were observed. The differences in pregnancy rates with respect to the evaluated factors, may be explained by individual, breed, and nutritional variations of the animals. There are few data in the literature with results on the embryo transfer use of IVF bovine under field conditions.


2009 ◽  
Vol 21 (1) ◽  
pp. 246 ◽  
Author(s):  
R. G. Steel ◽  
J. F. Hasler

Traditionally, successful superstimulation of cattle depended on initiating injections of gonadotrophin at mid-cycle, approximately at second follicular wave emergence. This approach limited the convenience of scheduling donors for superstimulation. With the use of intravaginal progesterone-releasing devices and estradiol 17β, superstimulation can be initiated successfully at any time of the estrous cycle. However, because estradiol cannot be legally injected into cattle in an increasing number of countries, the efficacy of GnRH as an estradiol substitute was investigated. A retrospective analysis was performed on data collected in a commercial bovine embryo transfer program over a period of several years. All donors were lactating dairy cows at least two years of age; approximately 75% were comprised of Holstein and the remainder of Jersey, Guernsey, or Brown Swiss breeds. The three treatments employed were (1) Controls injected twice daily for 4 days with a total of 240 to 400 mg of porcine FSH (Folltropin-V, Bioniche Animal Health, Inc.) in decreasing doses starting between day 7 and day 14 of diestrus, with PG (Lutalyse, Pfizer Animal Health) given at the time of FSH injections no. 5 (35 mg) and 6 (25 mg); (2) Estradiol females received a CIDR (Pfizer Animal Health), 5.0 mg estradiol 17β and 100 mg progesterone in oil on random days of the estrous cycle; FSH was initiated 4 days later as described for controls with CIDR removal at the time of FSH injection no. 6; (3) GnRH females received a CIDR on random days of the estrous cycle and 100 μg GnRH on day 1.5 following CIDR insertion; FSH was initiated 60 h after GnRH injection as described for controls with CIDR removal at the time of FSH injection no. 6. All donors were inseminated with one straw of frozen semen 12 and 24 h after the onset of estrus. Embryos were nonsurgically recovered 7 to 8 days after onset of estrus. Only embryos of grades 1 to 3 (IETS classification) were included in the data. Data were analyzed by ANOVA and Tukey’s hsd test was used to distinguish significance among means as shown in Table 1. Estradiol females produced approximately 2 more ova/embryos per procedure than Control and GnRH groups and an average of 0.8 more embryos per female than did the Control group, but there was no difference compared to the GnRH group. Similar to what has been shown in other commercial embryo transfer data sets, nearly 25% of the donors in each group failed to produce at least one good embryo. Clearly, all three treatments resulted in efficacious superstimulation. In light of the legality issues surrounding the use of estradiol, this study shows that GnRH can be used quite successfully to superstimulate dairy cattle at random times of the estrous cycle. Table 1.Average numbers of ova and embryos recovered from dairy cows superstimulated with three different protocols We thank G.E. Seidel, Jr. and S.C. Purcell for assistance with statistical analysis.


Sign in / Sign up

Export Citation Format

Share Document