scholarly journals Bile Salt Deconjugation and Cholesterol Removal from Media by Lactobacillus casei

1998 ◽  
Vol 81 (8) ◽  
pp. 2103-2110 ◽  
Author(s):  
M.M. Brashears ◽  
S.E. Gilliland ◽  
L.M. Buck
2011 ◽  
Vol 345 ◽  
pp. 139-146 ◽  
Author(s):  
Chun Feng Guo ◽  
Lan Wei Zhang ◽  
Jing Yan Li ◽  
Ying Chun Zhang ◽  
Chao Hui Xue ◽  
...  

.Cholesterol-lowering effect of lactic acid bacteria (LAB) with bile salt hydrolase activity is well known. In this study, 150 LAB were screened for bile salt deconjugation ability and probiotic characters. Fourteen isolates with higher bile salt deconjugation ability were initially screened out using deconjugation rate above 50% as standard. These isolates were further screened for adhesion to HT-29 cells, bile tolerance and acid resistance. Four isolates, namely Lactobacillus casei F0822, Lactobacillus casei F0422, Enterococcus faecium F0511 and Enterococcus faecium IN7.12, was finally screened out. The 4 isolates may be able to reduce serum cholesterol levels in human and thus have a potential to apply in the biomedicine field.


2019 ◽  
Vol 20 (9) ◽  
pp. 2073 ◽  
Author(s):  
Changlu Ma ◽  
Shuwen Zhang ◽  
Jing Lu ◽  
Cai Zhang ◽  
Xiaoyang Pang ◽  
...  

A total of 85 strains of lactic acid bacteria were isolated from corn silage in this study and analyzed in vitro for their cholesterol removal, NPC1L1 protein down-regulation and bile salt deconjugation ability, respectively. Nineteen strains were selected for further analysis for their probiotic potential. Finally, 3 strains showing better probiotic potential were evaluated for their cholesterol-lowering activity in hamsters. The strains showing the greater cholesterol removal and NPC1L1 protein down-regulation activity had no significant effects on serum and hepatic cholesterol levels in hamsters (p > 0.05). However, Lactobacillus plantarum CAAS 18008 (1 × 109 CFU/d) showing the greater bile salt deconjugation ability significantly reduced serum low-density lipoprotein cholesterol, total cholesterol, and hepatic total cholesterol levels by 28.8%, 21.7%, and 30.9%, respectively (p < 0.05). The cholesterol-lowering mechanism was attributed to its bile salt hydrolase activity, which enhanced daily fecal bile acid excretion levels and thereby accelerated new bile acid synthesis from cholesterol in liver. This study demonstrated that the strains showing greater cholesterol removal and NPC1L1 protein down-regulation activity in vitro hardly reveal cholesterol-lowering activity in vivo, whereas the strains showing greater bile salt deconjugation ability in vitro has large potential to decrease serum cholesterol levels in vivo.


2010 ◽  
Vol 90 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Kalavathy Ramasamy ◽  
Norhani Abdullah ◽  
Michael CVL Wong ◽  
Chinna Karuthan ◽  
Yin Wan Ho

1978 ◽  
Vol 75 (1) ◽  
pp. 166 ◽  
Author(s):  
Charles E. King ◽  
Phillip P. Toskes

2020 ◽  
Vol 84 (1) ◽  
pp. 63-72
Author(s):  
QING ZHANG ◽  
XIAOJUAN SONG ◽  
WENLIN SUN ◽  
CHAN WANG ◽  
CUIQIN LI ◽  
...  

ABSTRACT A total of 115 isolates of lactic acid bacteria were screened from traditional fermented foods in Guizhou Province, People's Republic of China. The cholesterol removal rates of 86 isolates ranged from 7.29 to 25.66%, and 18 isolates showed a cholesterol removal rate of more than 15%. According to the results of physiological and biological tests, 13 isolates were selected to determine the fermentation performance; 9 isolates—MT-4, MT-2, PJ-15, SR2-2, SQ-4, SQ-7, ST2-2, ST2-6, and NR1-7—had high tolerance of bile salt and acid and had a survival rate of more than 96% under pH 3.0 and 0.3% bile salt. ST2-2, SR2-2, NR1-7, SQ-4, and MT-4 had high survival rate in different concentrations of NaCl and NaNO2 under different temperatures. According to BLAST comparison results of the 16S rRNA sequence in the GenBank database and the genetic distance of the 16S rRNA sequence with an ortho-connected algorithm, SR2-2, NR1-7, and ST2-2 were identified as Lactobacillus plantarum, MT-4 was identified as Lactobacillus pentosus, and SQ-4 was identified as Lactobacillus paraplantarum. Moreover, strains SQ-4 and MT-4 were added to fermented beef. Results showed that the fermented beef had delicious taste and was popular to consumers because of its proper pH, pleasant colors, high viable cell count, and suitable content of bound and immobilized water. These results provide a basis for the development of new starter formulation for the production of high-quality fermented meat products. HIGHLIGHTS


2013 ◽  
Vol 781-784 ◽  
pp. 1336-1340
Author(s):  
Hui Liu ◽  
Yuan Hong Xie ◽  
Tao Han ◽  
Hong Xing Zhang

Cholesterol-lowering strains were obtained by high throughput screening technology and ortho-phthalaldehyde method. We used oxford cup method to screen again to obtain strains of high yield bile salt hydrolase and illuminate action mechanism ofLactobacillusreducing cholesterol. Screened six strains had the ability of high yield bile salt hydrolase and good ferment ability. The results of identifying bacteria species: strain KTxKL1J1 wereLactobacillus casei, strain Tx wasStreptococcus thermophilus, strain KS4P1 wereLactococcus lactis subsp.lactis, where the last two bacteria were strain of high yield bile salt hydrolase to be few known in literature. This work showed that dissociation bile salts and cholesterol conjuncted sediments by bile salt hydrolase decomposing conjugated bile salts.


The Lancet ◽  
1968 ◽  
Vol 292 (7558) ◽  
pp. 12-16 ◽  
Author(s):  
Soad Tabaqchali ◽  
J. Hatzioannou ◽  
C.C. Booth

1978 ◽  
Vol 74 (2) ◽  
pp. 332-333 ◽  
Author(s):  
Tuvia Gilat ◽  
Colette Levy-Gigy ◽  
Yochanan Peled

Sign in / Sign up

Export Citation Format

Share Document