Evaluation and Application of Different Cholesterol-Lowering Lactic Acid Bacteria as Potential Meat Starters

2020 ◽  
Vol 84 (1) ◽  
pp. 63-72
Author(s):  
QING ZHANG ◽  
XIAOJUAN SONG ◽  
WENLIN SUN ◽  
CHAN WANG ◽  
CUIQIN LI ◽  
...  

ABSTRACT A total of 115 isolates of lactic acid bacteria were screened from traditional fermented foods in Guizhou Province, People's Republic of China. The cholesterol removal rates of 86 isolates ranged from 7.29 to 25.66%, and 18 isolates showed a cholesterol removal rate of more than 15%. According to the results of physiological and biological tests, 13 isolates were selected to determine the fermentation performance; 9 isolates—MT-4, MT-2, PJ-15, SR2-2, SQ-4, SQ-7, ST2-2, ST2-6, and NR1-7—had high tolerance of bile salt and acid and had a survival rate of more than 96% under pH 3.0 and 0.3% bile salt. ST2-2, SR2-2, NR1-7, SQ-4, and MT-4 had high survival rate in different concentrations of NaCl and NaNO2 under different temperatures. According to BLAST comparison results of the 16S rRNA sequence in the GenBank database and the genetic distance of the 16S rRNA sequence with an ortho-connected algorithm, SR2-2, NR1-7, and ST2-2 were identified as Lactobacillus plantarum, MT-4 was identified as Lactobacillus pentosus, and SQ-4 was identified as Lactobacillus paraplantarum. Moreover, strains SQ-4 and MT-4 were added to fermented beef. Results showed that the fermented beef had delicious taste and was popular to consumers because of its proper pH, pleasant colors, high viable cell count, and suitable content of bound and immobilized water. These results provide a basis for the development of new starter formulation for the production of high-quality fermented meat products. HIGHLIGHTS

2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


2000 ◽  
Vol 66 (5) ◽  
pp. 2224-2226 ◽  
Author(s):  
Frédéric Ampe

ABSTRACT Based on 16S rRNA sequence comparison, we have designed a 20-mer oligonucleotide that targets a region specific to the speciesLactobacillus manihotivorans recently isolated from sour cassava fermentation. The probe recognized the rRNA obtained from all the L. manihotivorans strains tested but did not recognize 56 strains of microorganisms from culture collections or directly isolated from sour cassava, including 29 species of lactic acid bacteria. This probe was then successfully used in quantitative RNA blots and demonstrated the importance of L. manihotivoransin the fermentation of sour cassava starch, which could represent up to 20% of total lactic acid bacteria.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1519
Author(s):  
Elvina Parlindungan ◽  
Gabriele A. Lugli ◽  
Marco Ventura ◽  
Douwe van Sinderen ◽  
Jennifer Mahony

Probiotics are defined as live microorganisms which confer health benefits to the host when administered in adequate amounts. Many lactic acid bacteria (LAB) strains have been classified as probiotics and fermented foods are an excellent source of such LAB. In this study, novel probiotic candidates from two fermented meats (pancetta and prosciutto) were isolated and characterized. LAB populations present in pancetta and prosciutto were evaluated and Lactiplantibacillus plantarum was found to be the dominant species. The antagonistic ability of selected isolates against LAB and non-LAB strains was investigated, in particular, the ability to produce anti-microbial compounds including organic acids and bacteriocins. Probiotic characteristics including antibiotic susceptibility, hydrophobicity and autoaggregation capacity; and ability to withstand simulated gastric juice, bile salt, phenol and NaCl were assessed. Among the characterized strains, L. plantarum 41G isolated from prosciutto was identified as the most robust probiotic candidate compared. Results from this study demonstrate that artisanal fermented meat is a rich source of novel strains with probiotic potential.


Author(s):  
Kanika Sharma ◽  
Nivedita Sharma ◽  
Shweta Handa ◽  
Shruti Pathania

Abstract Background Microbial origin polysaccharides have gained popularity due to lesser toxicity, better degradability and selectivity as compared to their synthetic counterparts and can be used as emulsifier, stabilizer, thickener, texturizer, flocculating and gelling agent. Here main emphasis on exopolysaccharide production from potential lactic acid bacteria that has GRAS status. Results This work was aimed at isolating, purifying and characterizing an extracellular polysaccharide (EPS) produced by a foodgrade lactic acid bacteria Lactobacillus paraplantarum KM1. L. paraplantarum KM1 was isolated from human milk and identified by conventional and molecular techniques. The 16S rRNA sequence of the isolate was registered in National Centre for Biotechnology Information (NCBI) under accession number KX671558. L. paraplantarum KM1 was found to produce EPSs in lactose containing MRS medium, and the maximum yield (47.4 mg/ml) was achieved after 32-h incubation. As evident from TLC and HPLC analyses, the polysaccharide was found to be a heteropolymer-containing glucose, galactose and mannose as main sugars. Different oligosaccharides namely hexoses were obtained after partial hydrolysis of the polymer using MALDI-ToF-MS. The total molecular weight of all polysaccharides present was 348.7 kDa with 100 °C thermal stability as well as water soluble in nature. Cell cytotoxicity revealed that the purified EPS was safe for consumption; thus, it can be used in various food industries as emulsifying and texture agent. Conclusions The present study highlighted that exopolysaccharides could be harnessed to improve food products in terms of texture, emulsifying agents, pharmaceutical industry (antioxidants, antitumour, anti-inflammatory and antiviral agents) and as safety purposes.


2020 ◽  
Vol 9 (8) ◽  
pp. e266984958
Author(s):  
Cristiane Pereira de Lima ◽  
Giselle Maria Pereira Dias ◽  
Maria Taciana Cavalcanti Vieira Soares ◽  
Laura Maria Bruno ◽  
Ana Lucia Figueiredo Porto

The aim of this study was to characterize the probiotic potential of 24 lactic acid bacteria (LAB) strains isolated from artisanal Coalho cheese from Pernambuco, Brazil by in vitro tests. The gastrointestinal tract (GIT) resistance, antimicrobial activity against intestinal pathogens, autoaggregation and coaggregation capacity, cell hydrophobicity, ß-galactosidase activity, deconjugate bile salt activity for the production of bile salt hydrolase (BSH), and the sensitivity to antibiotics were evaluated. Of the 24 strains, 22 remained viable to a simulated GIT. Two LAB inhibited the growth of Listeria monocytogenes and two inhibited Escherichia coli. The autoaggregation rate ranged from 27% to 96%, and the strains were able to coaggregate with Staphylococcus aureus and E. coli reaching levels between 58% and 47%, respectively. The hydrophobicity percentage ranged from 5% to 57%. Four strains were able to produce BSH. One LAB was able to produce up to 604 Miller units of ß-galactosidase. All strains were sensitive to five antibiotics and only two were resistant to vancomycin (30μg) and norfloxacin (10g). LAB strains which were able to overcome all barriers with a reduction of only one log cycle and LAB strains which were able to produce ß-galactosidase were identified by 16S rRNA sequence analysis as Lactococcus lactis subsp. Lactis, Enterococcus durans, and Enterococcus faecium. The evaluated LAB showed promising probiotic characteristics. Strains identified as L. lactis subsp. Lactis were selected for studies involving their technological potential to investigate the possible use of these microorganisms into a functional product.


2021 ◽  
Author(s):  
Jaruwan Sitdhipol ◽  
Kanidta Niwasabutra ◽  
Neungnut Chaiyawan ◽  
Siritorn Teerawet ◽  
Punnathorn Thaveethaptaikul ◽  
...  

Abstract Fourteen lactic acid bacteria from fermented foods and feces of healthy animals in Thailand were characterized for their potential as probiotics. All isolates could survive in simulated gastrointestinal fluid (pH 2) and bile salt solution (pH 8) more than 70% and 63%, when compare with initial cell concentration, respectively. Adhesion test showed more than 70% adhesive property an in vitro experiment. The susceptibility assay showed that all isolates were susceptible to amoxicillin, ampicillin, erythromycin, chloramphenicol, clindamycin, imipenem, kanamycin, norfloxacin, penicillin, tetracycline and vancomycin. Based on phenotypic and genetic characteristics, they belonged to the genera Lactiplantibacillus, Levilactobacillus, Capanilactobacillus, Pediococcus, Enterococcus, Limosilactobacillus and Lacticaseibacillus. The isolates exhibited antimicrobial ability against pathogenic bacteria; Gram positive strains (Staphylococcus aureus TISTR 1466 and Listeria monocytogenes TISTR 2196) and Gram negative (Escherichia coli TISTR 780, Salmonella enteritidis TISTR 2202 and Salmonella typhimurium TISTR 292). Limosilactobacillus reuteri MF67.1 and Companilactobacillus farciminis R7-1 showed bile salt hydrolase activity. Cell-free culture supernatants of all 14 isolates were screened for immunomodulating effects on Tumor Necrosis Factor Alpha (TNF-α) production. Twelve isolates were able to decrease TNF-α production at different levels, especially Lactiplantibacillus paraplantarum R26-3 and Lacticaseibacillus zeae M2/5 could high inhibit TNF-α production, showing 34 and 29% reduction, respectively. These results suggested that all 14 strains met the general criteria of probiotics and four strains, including Lacticaseibacillus zeae M2/5, Lactiplantibacillus paraplantarum R26-3, Limosilactobacillus reuteri MF67.1 and Companilactobacillus farciminis R7-1, represent interesting candidates for further studies as anti-inflammatory (M2/5, R26-3) or cholesterol reducing agents (MF67.1, R7-1) in vivo animal models.


2013 ◽  
Vol 16 (3) ◽  
pp. 40-47
Author(s):  
Tinh Duc Quach ◽  
Trung Thanh Tong ◽  
Duy Ngoc Nguyen ◽  
Huong Thuy Nguyen

Kefir is fermented from lactic acid bacteria (LAB), yeasts and some other groups. It’s is considered as a natural probiotic products. However, there is no clear evidence that proves the probiotic activity of traditional products In this study, we demonstrated its probiotic activity and made an effort to increase the probiotic activity by adding Lactobacillus casei VTCC186 into passionfruit-Kefir. The density of LAB and yeast density increased 1,99 and 2,01 lg(cfu/mL) respectively compared with traditional passionfruitKefir.In addition, we also examined the gastric and bile salt tolerance of products’ microbial flora. Gastric survival rate of traditional Kefir is 39,36% and enrichedprobiotic Kefir is 52,01% after 2 hours. Moreover, products had strong antimicrobial activity and reduced cholesterol.


2012 ◽  
Vol 55 (6) ◽  
pp. 787-792 ◽  
Author(s):  
Baolo Kim ◽  
Weon Taek Seo ◽  
Min Geun Kim ◽  
Han Dae Yun ◽  
Kye Man Cho

2020 ◽  
Vol 13 (9) ◽  
pp. 1922-1927
Author(s):  
Harnentis Harnentis ◽  
Yetti Marlida ◽  
Yuliaty Shafan Nur ◽  
Wizna Wizna ◽  
Melia Afnida Santi ◽  
...  

Background and Aim: Probiotics play an important role in maintaining a healthy gut and consequently promote good health. This study aimed to find novel probiotic lactic acid bacteria (LAB) from indigenous fermented foods of West Sumatera, Indonesia. Materials and Methods: This study utilized 10 LAB previously isolated from fermented buffalo milk (dadih), fermented fish (budu), and fermented cassava (tape) which have the ability to produce gamma-aminobutyric acid. The study commenced with the screening of LAB for certain properties, such as resistance to acid and bile salts, adhesion to mucosal surface, and antagonism against enteric pathogens (Escherichia coli, Salmonella Enteritidis, and Staphylococcus aureus). The promising isolates were identified through biochemical and gram staining methods. Results: All isolates in this study were potential novel probiotics. They survived at a pH level of 2.5 for 3 h (55.27-98.18%) and 6 h (50.98-84.91%). Survival in bile at a concentration of 0.3% was 39.90-58.61% and the survival rate was 28.38- 52.11% at a concentration of 0.5%. The inhibitory diameter ranged from 8.75 to 11.54 mm for E. coli, 7.02 to 13.42 mm for S. aureus, and 12.49 to 19.00 mm for S. Enteritidis. All the isolates (84.5-92%) exhibited the ability to adhere to mucosal surfaces. This study revealed that all the isolates were potential probiotics but N16 proved to be superior because it was viable at a pH level of 2 (84.91%) and it had a good survival rate in bile salts assay (55.07%). This isolate was identified as Lactobacillus spp., Gram-positive bacilli bacteria, and tested negative in both the catalase and oxidase tests. Conclusion: All the isolates in this study may be used as probiotics, with isolate N16 (Lactobacillus spp.) as the most promising novel probiotic for poultry applications based on its ability to inhibit pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document