scholarly journals [Papers] Quantum Efficiency Simulation and Electrical Cross-talk Index Development with Monte-Carlo Simulation Based on Boltzmann Transport Equation

2018 ◽  
Vol 6 (3) ◽  
pp. 180-186
Author(s):  
Yuichiro Yamashita ◽  
Natsumi Minamitani ◽  
Masayuki Uchiyama ◽  
Dun-Nian Yaung ◽  
Yoshinari Kamakura
VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 147-151 ◽  
Author(s):  
C.-H. Chang ◽  
C.-K. Lin ◽  
N. Goldsman ◽  
I. D. Mayergoyz

We perform a rigorous comparison between the Spherical Harmonic (SH) and Monte Carlo (MC) methods of solving the Boltzmann Transport Equation (BTE), on a 0.05 μm base BJT. We find the SH and the MC methods give very similar results for the energy distribution function, using an analytical band-structure, at all points within the tested devices. However, the SH method can be as much as seven thousand times faster than the MC approach for solving an identical problem. We explain the agreement by asymptotic analysis of the system of equations generated by the SH expansion of the BTE.


Author(s):  
Kohei Ito ◽  
Ryohei Muramoto ◽  
Isamu Shiozawa ◽  
Yasushi Kakimoto ◽  
Takashi Masuoka

By the development of micro-fabrication technology, much smaller-size electronic devices will be soon available. In such a smaller device, a non-equilibrium state might appear in metal and/or semiconductor. In this case, it is difficult to estimate the device performance by the macroscopic transport equations that assume quasi-equilibrium distribution. We are developing a numerical simulation based on Boltzmann transport equation (BTE), which can analyze thermal and electric phenomena even when the state is far from equilibrium. In this study, we show a new formulation of BTE for free electron in metal and its calculation result: the thermoelectric power obtained agreed with that of experimental value: the heat flux derived by the non-equilibrium distribution was two-orders small than that estimated by thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document