Patient-specific thresholds of intracranial pressure in severe traumatic brain injury

2014 ◽  
Vol 120 (4) ◽  
pp. 893-900 ◽  
Author(s):  
Christos Lazaridis ◽  
Stacia M. DeSantis ◽  
Peter Smielewski ◽  
David K. Menon ◽  
Peter Hutchinson ◽  
...  

Object Based on continuous monitoring of the pressure reactivity index (PRx), the authors defined individualized intracranial pressure (ICP) thresholds by graphing the relationship between ICP and PRx. These investigators hypothesized that an “ICP dose” based on individually assessed ICP thresholds would correlate more closely with the 6-month outcome when compared with ICP doses derived by the recommended universal thresholds of 20 and 25 mm Hg. Methods This study was a retrospective analysis of prospectively collected data from 327 patients with severe traumatic brain injury. Results Individualized thresholds were visually identified from graphs of PRx versus ICP; PRx > 0.2 was the cutoff. Intracranial pressure doses were then computed as the cumulative area under the curve above the defined thresholds in graphing ICP versus time. The term “Dose 20” (D20) was used to refer to an ICP threshold of 20 mm Hg; the markers D25 and DPRx were calculated similarly. Separate logistic regression models were fit with death as the outcome and each dose as the predictor, both alone and adjusted for covariates. The discriminative ability of each dose for mortality was assessed by receiver operating characteristic AUC analysis in which 5-fold cross-validation was used. A clearly identifiable PRx-based threshold was possible in 224 patients (68%). The DPRx (AUC 0.81, 95% CI 0.74–0.87) was found to have the highest area under the curve (AUC) over both D20 (0.75, 95% CI 0.68–0.81) and D25 (0.77, 95% CI 0.70–0.83); in the cross-validation model, DPRx remained the best discriminator of mortality (DPRx: AUC 0.77 [95% CI 0.68–0.89]; D20: 0.72 [95% CI 0.66–0.81]; and D25: 0.65 [95% CI 0.56–0.73]). Conclusions The authors explored the importance of different ICP thresholds for outcome by calculating patient-specific ICP doses based on the continuous monitoring of cerebrovascular pressure reactivity. They found that these individualized doses of intracranial hypertension were stronger predictors of death than doses derived from the universal thresholds of 20 and 25 mm Hg. The PRx could offer a method that can be directed toward individualizing the ICP threshold.

2006 ◽  
Vol 104 (5) ◽  
pp. 731-737 ◽  
Author(s):  
Magdalena Hiler ◽  
Marek Czosnyka ◽  
Peter Hutchinson ◽  
Marcella Balestreri ◽  
Peter Smielewski ◽  
...  

Object The authors explored the relationship between computerized tomography (CT) scan findings and intracranial pressure (ICP) measurements obtained in the first 24 hours of monitoring to identify parameters predicting outcome in patients with severe traumatic brain injury (TBI). Methods Intracranial pressure, mean arterial blood pressure, cerebral perfusion pressure (CPP), and pressure reactivity index were measured continuously in 126 patients with severe TBI who were admitted to a neuroscience critical care unit. Mean values in the initial 24 hours of monitoring and in the total period of monitoring were compared with types of injury categorized on the basis of the initial CT scan according to the classification of Marshall, et al., and with Glasgow Outcome Scale scores. The initial CT scan classification correlated significantly but weakly with ICP measured during the first 24 hours of monitoring (p = 0.036) but not with mean ICP over the total time of intensive care. Both midline shift and the ratio of frontal horn diameter to internal diameter correlated with ICP in the first 24 hours (p < 0.007) and with ICP over the total monitoring period (p < 0.03). Outcome score correlated with initial CT scan findings (p = 0.018), ICP over the total monitoring period (p < 0.0023), pressure reactivity over the total monitoring period (p < 0.0002), and pressure reactivity in the first 24 hours (p < 0.0001) but not with ICP in the first 24 hours. Patients with disturbed pressure reactivity in the first 24 hours after injury had a significantly higher mortality rate than patients with intact pressure reactivity (28.6% compared with 9.5%; p < 0.001). Conclusions Patients with severe TBI who have early loss of autoregulation have a worse prognosis. Mean ICP values in patients with diffuse TBI cannot be predicted by using the Marshall CT scan classification.


2008 ◽  
Vol 108 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Ivan Timofeev ◽  
Marek Czosnyka ◽  
Jurgens Nortje ◽  
Peter Smielewski ◽  
Peter Kirkpatrick ◽  
...  

Object Decompressive craniectomy is an advanced treatment option for intracranial pressure (ICP) control in patients with traumatic brain injury. The purpose of this study was to evaluate the effect of decompressive craniectomy on ICP and cerebrospinal compensation both within and beyond the first 24 hours of craniectomy. Methods This study was a retrospective analysis of the physiological parameters from 27 moderately to severely head-injured patients who underwent decompressive craniectomy for progressive brain edema. Of these, 17 patients had undergone prospective digital recording of ICP with estimation of ICP waveform–derived indices. The pressure-volume compensatory reserve (RAP) index and the cerebrovascular pressure reactivity index (PRx) were used to assess those parameters. The values of parameters prior to and during the 72 hours after decompressive craniectomy were included in the analysis. Results Decompressive craniectomy led to a sustained reduction in median (interquartile range) ICP values (21.2 mm Hg [18.7; 24.2 mm Hg] preoperatively compared with 15.7 mm Hg [12.3; 19.2 mm Hg] postoperatively; p = 0.01). A similar improvement was observed in RAP. A significantly lower mean arterial pressure (MAP) was needed after decompressive craniectomy to maintain optimum cerebral perfusion pressure (CPP) levels, compared with the preoperative period (99.5 mm Hg [96.2; 102.9 mm Hg] compared with 94.2 mm Hg [87.9; 98.9 mm Hg], respectively; p = 0.017). Following decompressive craniectomy, the PRx had positive values in all patients, suggesting acquired derangement in pressure reactivity. Conclusions In this study, decompressive craniectomy led to a sustained reduction in ICP and improvement in cerebral compliance. Lower MAP levels after decompressive craniectomy are likely to indicate a reduced intensity of treatment. Derangement in cerebrovascular pressure reactivity requires further studies to evaluate its significance and influence on outcome.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Daniel Agustin Godoy ◽  
Rafael Badenes ◽  
Paolo Pelosi ◽  
Chiara Robba

AbstractMaintaining an adequate level of sedation and analgesia plays a key role in the management of traumatic brain injury (TBI). To date, it is unclear which drug or combination of drugs is most effective in achieving these goals. Ketamine is an agent with attractive pharmacological and pharmacokinetics characteristics. Current evidence shows that ketamine does not increase and may instead decrease intracranial pressure, and its safety profile makes it a reliable tool in the prehospital environment. In this point of view, we discuss different aspects of the use of ketamine in the acute phase of TBI, with its potential benefits and pitfalls.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Harrois ◽  
◽  
J. R. Anstey ◽  
F. S. Taccone ◽  
A. A. Udy ◽  
...  

Following publication of the original article [1], we were notified that the collaborators’ names part of the “The TBI Collaborative” group has not been indexed in Pubmed. Below the collaborators names full list:


2008 ◽  
Vol 109 (4) ◽  
pp. 678-684 ◽  
Author(s):  
Anne Vik ◽  
Torbjørn Nag ◽  
Oddrun Anita Fredriksli ◽  
Toril Skandsen ◽  
Kent Gøran Moen ◽  
...  

Object It has recently been suggested that the degree of intracranial pressure (ICP) above the treatment goal can be estimated by the area under the curve (AUC) of ICP versus time in patients with severe traumatic brain injury (TBI). The objective of this study was to determine whether the calculated “ICP dose”—the ICP AUC—is related to mortality rate, outcome, and Marshall CT classification. Methods Of 135 patients (age range 1–82 years) with severe TBI treated during a 5-year period at the authors' institution, 113 patients underwent ICP monitoring (84%). Ninety-three patients with a monitoring time > 24 hours were included for analysis of ICP AUC calculated using the trapezoidal method. Computed tomography scans were assessed according to the Marshall TBI classification. Patients with Glasgow Outcome Scale scores at 6 months and > 3 years were separated into 2 groups based on outcome. Results Sixty patients (65%) had ICP values > 20 mm Hg, and 12 (13%) developed severe intracranial hypertension and died secondary to herniation. A multiple regression analysis adjusting for Glasgow Coma Scale score, age, pupillary abnormalities and Injury Severity Scale score demonstrated that the ICP AUC was a significant predictor of poor outcome at 6 months (p = 0.034) and of death (p = 0.035). However, it did not predict long-term outcome (p = 0.157). The ICP AUC was significantly higher in patients with Marshall head injury Categories 3 and 4 (24 patients) than in those with Category 2 (23 patients, p = 0.025) and Category 5 (46 patients, p = 0.021) TBIs using the worst CT scan obtained. Conclusions The authors found a significant relationship between the dose of ICP, the worst Marshall CT score, and patient outcome, suggesting that the AUC method may be useful in refining and improving the treatment of ICP in patients with TBI.


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


Sign in / Sign up

Export Citation Format

Share Document