scholarly journals Awake perimetry testing for occipital epilepsy surgery

2018 ◽  
Vol 129 (5) ◽  
pp. 1195-1199 ◽  
Author(s):  
Holger Joswig ◽  
John P. Girvin ◽  
Warren T. Blume ◽  
Jorge G. Burneo ◽  
David A. Steven

In the literature, there are few reports that provide a detailed account on the technique of visual electrocortical stimulation in the setting of resective surgery for occipital epilepsy. In this technical note, the authors describe how a 26-year-old male with long-standing occipital epilepsy underwent resective surgery under awake conditions, using electrocortical stimulation of the occipital lobe, with the aid of a laser pointer and a perimetry chart on a stand within his visual field. The eloquent primary visual cortex was found to overlap with the seizure onset zone that was previously determined with subdural electrodes. A maximum functionally safe resection was performed, rendering the patient seizure free as of his last follow-up at 20 months, with no visual field impairment.

2012 ◽  
Vol 117 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Juri Kivelev ◽  
Elina Koskela ◽  
Kirsi Setälä ◽  
Mika Niemelä ◽  
Juha Hernesniemi

Object Cavernomas in the occipital lobe are relatively rare. Because of the proximity to the visual cortex and incoming subcortical tracts, microsurgical removal of occipital cavernomas may be associated with a risk of visual field defects. The goal of the study was to analyze long-term outcome after operative treatment of occipital cavernomas with special emphasis on visual outcome. Methods Of the 390 consecutive patients with cavernomas who were treated at Helsinki University Central Hospital between 1980 and 2011, 19 (5%) had occipital cavernomas. Sixteen patients (4%) were surgically treated and are included in this study. The median age was 39 years (range 3–59 years). Seven patients (56%) suffered from hemorrhage preoperatively, 5 (31%) presented with visual field deficits, 11 (69%) suffered from seizures, and 4 (25%) had multiple cavernomas. Surgery was indicated for progressive neurological deterioration. The median follow-up after surgery was 5.25 years (range 0.5–14 years). Results All patients underwent thorough neuroophthalmological assessment to determine visual outcome after surgery. Visual fields were classified as normal, mild homonymous visual field loss (not disturbing the patient, driving allowed), moderate homonymous visual field loss (disturbing the patient, driving prohibited), and severe visual field loss (total homonymous hemianopia or total homonymous quadrantanopia). At the last follow-up, 4 patients (25%) had normal visual fields, 6 (38%) had a mild visual field deficit, 1 (6%) complained of moderate visual field impairment, and 5 (31%) had severe homonymous visual field loss. Cavernomas seated deeper than 2 cm from the pial surface carried a 4.4-fold risk of postoperative visual field deficit relative to superficial ones (p = 0.034). Six (55%) of the 11 patients presenting with seizures were seizure-free postoperatively. Eleven (69%) of 16 patients had no disability during the long-term follow-up. Conclusions Surgical removal of occipital cavernomas may carry a significant risk of postoperative visual field deficit, and the risk is even higher for deeper lesions. Seizure outcome after removal of these cavernomas appeared to be worse than that after removal in other supratentorial locations. This should be taken into account during preoperative planning.


2021 ◽  
Author(s):  
Mehdi Khan ◽  
Aswin Chari ◽  
Kiran Seunarine ◽  
Christin Eltze ◽  
Friederike Moeller ◽  
...  

AbstractPurposeChildren undergoing stereoelectroencephalography (SEEG)-guided epilepsy surgery represent a complex cohort. We aimed to determine whether the proportion of putative seizure onset zone (SOZ) contacts resected associates with seizure outcome in a cohort of children undergoing SEEG-guided resective epilepsy surgery.MethodsPatients who underwent SEEG-guided resective surgery over a six-year period were included. The proportion of SOZ contacts resected was determined by co-registration of pre- and post-operative imaging. Seizure outcomes were classified as seizure free (SF, Engel class I) or not seizure-free (NSF, Engel class II-IV) at last clinical follow-up.ResultsOf 94 patients undergoing SEEG, 29 underwent subsequent focal resection of whom 22 had sufficient imaging data to be included in the primary analysis (median age at surgery of 10 years, range 5-18). Fifteen (68.2%) were SF and 7 (31.8%) NSF at median follow-up of 19.5 months (range 12-46). On univariate analysis, histopathology, was the only significant factor associated with SF (p<0.05). The percentage of defined SOZ contacts resected ranged from 25-100% and was not associated with SF (p=0.89). In a binary logistic regression model, it was highly likely that histology was the only independent predictor of outcome, although the interpretation was limited by pseudo-complete separation of the data.ConclusionHistopathology is a significant predictor of surgical outcomes in children undergoing SEEG-guided resective epilepsy surgery. The percentage of SOZ contacts resected was not associated with SF. Factors such as spatial organisation of the epileptogenic zone, neurophysiological biomarkers and the prospective identification of pathological tissue may therefore play an important role.


2019 ◽  
Author(s):  
Qi Yan ◽  
Nicolas Gaspard ◽  
Hitten P Zaveri ◽  
Hal Blumenfeld ◽  
Lawrence J. Hirsch ◽  
...  

AbstractObjectiveTo investigate the performance of a metric of functional connectivity to classify and grade the excitability of brain regions based on evoked potentials to single pulse electrical stimulation (SPES).MethodsPatients who received 1-Hz frequency stimulation between 2003 and 2014 at Yale at prospectively selected contacts were included. The stimulated contacts were classified as seizure onset zone (SOZ), highly irritative zone (IZp) or control. Response contacts were classified as seizure onset zone (SOZ), active interictal (IZp), quiet or other. The normalized number of responses was defined as the number of contacts with any evoked responses divided by the total number of recorded contacts, and the normalized distance is the ratio of the average distance between the site of stimulation and sites of evoked responses to the average distances between the site of stimulation and all other recording contacts. A new metric we labeled the connectivity index (CI) is defined as the product of the two values.Results57 stimulation-sessions in 22-patients were analyzed. The connectivity index (CI) of the SOZ was higher than control (median CI of 0.74 vs. 0.16, p = 0.0002). The evoked responses after stimulation of SOZ were seen at further distance compared to control (median normalized distance 0.96 vs. 0.62, p = 0.0005). It was 1.8 times more likely to record a response at SOZ than in non-epileptic contacts after stimulation of a control site. Habitual seizures were triggered in 27% of patients and 35 % of SOZ contacts (median stimulation intensity 4 mA) but in none of the control or IZp contacts. Non-SOZ contacts in multifocal or poor surgical outcome cases had a higher CI than non-SOZ contacts in those with localizable onsets (medians CI of 0.5 vs. 0.12, p = 0.04). There was a correlation between the stimulation current intensity and the normalized number of evoked responses (r = + 0.49, p 0.01) but not with distance (r = + 0.1, p 0.64)ConclusionsWe found enhanced connectivity when stimulating the SOZ compared to stimulating control contacts; responses were more distant as well. Habitual auras and seizures provoked by SPES were highly predictive of brain sites involved in seizure generation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiahua Xu ◽  
Zheng Wu ◽  
Andreas Nürnberger ◽  
Bernhard A. Sabel

Objective: Non-invasive brain stimulation (NIBS) is already known to improve visual field functions in patients with optic nerve damage and partially restores the organization of brain functional connectivity networks (FCNs). However, because little is known if NIBS is effective also following brain damage, we now studied the correlation between visual field recovery and FCN reorganization in patients with stroke of the central visual pathway.Method: In a controlled, exploratory trial, 24 patients with hemianopia were randomly assigned to one of three brain stimulation groups: transcranial direct current stimulation (tDCS)/transcranial alternating current stimulation (tACS) (ACDC); sham tDCS/tACS (AC); sham tDCS/sham tACS (Sham), which were compared to age-matched controls (n = 24). Resting-state electroencephalogram (EEG) was collected at baseline, after 10 days stimulation and at 2 months follow-up. EEG recordings were analyzed for FCN measures using graph theory parameters, and FCN small worldness of the network and long pairwise coherence parameter alterations were then correlated with visual field performance.Result: ACDC enhanced alpha-band FCN strength in the superior occipital lobe of the lesioned hemisphere at follow-up. A negative correlation (r = −0.80) was found between the intact visual field size and characteristic path length (CPL) after ACDC with a trend of decreased alpha-band centrality of the intact middle occipital cortex. ACDC also significantly decreased delta band coherence between the lesion and the intact occipital lobe, and coherence was enhanced between occipital and temporal lobe of the intact hemisphere in the low beta band. Responders showed significantly higher strength in the low alpha band at follow-up in the intact lingual and calcarine cortex and in the superior occipital region of the lesioned hemisphere.Conclusion: While ACDC decreases delta band coherence between intact and damaged occipital brain areas indicating inhibition of low-frequency neural oscillations, ACDC increases FCN connectivity between the occipital and temporal lobe in the intact hemisphere. When taken together with the lower global clustering coefficient in responders, these findings suggest that FCN reorganization (here induced by NIBS) is adaptive in stroke. It leads to greater efficiency of neural processing, where the FCN requires fewer connections for visual processing.


2004 ◽  
Vol 101 (1) ◽  
pp. 114-118 ◽  
Author(s):  
Takanobu Kaido ◽  
Tohru Hoshida ◽  
Toshiaki Taoka ◽  
Toshisuke Sakaki

Object. The lateral occipital cortex in humans is known as the “extrastriate visual cortex.” It is, however, an unexplored field of research, and the anatomical nomenclature for its surface has still not been standardized. This study was designed to investigate whether the lateral occipital cortex in humans has retinotopic representation. Methods. Four right-handed patients with a diagnosis of intractable epilepsy from space-occupying lesions in the occipital lobe or epilepsy originating in the occipital lobe received permanently implanted subdural electrodes. Electrical cortical stimulation was applied directly applied to the brain through metal electrodes by using a biphasic stimulator. The location of each electrode was measured on a lateral skull x-ray study. Each patient considered a whiteboard with vertical and horizontal median lines. The patient was asked to look at the midpoint on the whiteboard. If a visual hallucination or illusion occurred, the patient recorded its outline, shape, color, location, and motion on white paper one tenth the size of, and with vertical and horizontal median lines similar to those on, the whiteboard. Polar angles and eccentricities of the midpoints of the phosphenes from the coordinate origin were measured on the paper. On stimulation of the lateral occipital lobe, 44 phosphenes occurred. All phosphenes were circular or dotted, with a diameter of approximately 1 cm, except one that was like a curtain in the peripheral end of the upper and lower visual fields on stimulation of the parietooccipital region. All phosphenes appeared in the visual field contralateral to the cerebral hemisphere stimulated. On stimulation of the lateral occipital lobe, 22 phosphenes moved centrifugally or toward a horizontal line. From three-dimensional scatterplots and contour maps of the polar angles and eccentricities in relation to the x-ray coordinates of the electrodes, one can infer that the lateral occipital cortex in humans has retinotopic representation. Conclusions. The authors found that phosphenes induced by electrical cortical stimulation of the lateral occipital cortex represent retinotopy. From these results one can assert that visual field representation with retinotopic relation exists in the extrastriate visual cortex.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianhua Chen ◽  
Xiangqin Zhou ◽  
Liri Jin ◽  
Qiang Lu ◽  
Heyang Sun ◽  
...  

Introduction: It remains controversial whether the periodic discharges (PDs) pattern is an ictal or interictal phenomenon. The aims of the study are to apply time-frequency and power spectrum analysis to study the PDs pattern and prediction of seizures.Methods: We retrospectively searched continuous electroencephalography (cEEG) recordings to identify patients exhibiting the PDs pattern. Artifact-free cEEG segments demonstrating the PDs pattern with stable baselines were chosen for time-frequency and power spectrum analysis.Results: In total, 72 patients (1.3%) exhibited the PDs pattern, with a mean age 36.0 ± 20.7 years (range, 8–76 years). The median spectral power of PDs with a length of 60 s was 70.94 μV2 and that of PDs with a length of 20 s was 195.80 μV2. During follow-up, patients with spectral power of PDs of length 60 and 20 s lower than 28.65 and 36.09 μV2, respectively, exhibited no seizure. For predicting seizures, when the spectral power for PDs of 60 and 20 s equaled to 17.26 and 21.40 μV2, respectively, the diagnostic sensitivity was 100% and specificity was 86%. The locations of maximal spectral power of PDs, crude seizure onset zone (SOZ) judged from scalp EEG, and the most prominent regions of hyper- or hypo-metabolism on FDG-PET were congruent.Conclusions: Spectral power might be a candidate seizure marker of the PDs pattern. High spectral power predicted a high risk of seizures, and low spectral power was associated with a low risk of seizures.


2007 ◽  
Vol 77 (2-3) ◽  
pp. 108-119 ◽  
Author(s):  
Kaspar Schindler ◽  
Christian E. Elger ◽  
Klaus Lehnertz

Sign in / Sign up

Export Citation Format

Share Document