Hydrostatically raised intracranial pressure

1972 ◽  
Vol 37 (6) ◽  
pp. 695-699 ◽  
Author(s):  
Timo Kuurne ◽  
Henry Troupp

✓ Hydrostatic pressure with artificial cerebrospinal fluid (CSF) was applied through a needle inserted into the cisterna magna of rabbits breathing spontaneously. Blood pressure, confluens sinuum pressure and oxygen tension, respiratory rate and volume, and acid-base balance were recorded until respiratory arrest. Blood pressure and confluens sinuum pressure and respiratory volume rose; confluens sinuum oxygen and arterial carbon dioxide tension dropped. The significant similarities and differences in changes in the same parameters following local cold injury to the brain are discussed. Comparisons between different experimental models for raised intracranial pressure must take into consideration the differing reactions of the brain.

1972 ◽  
Vol 36 (5) ◽  
pp. 625-633 ◽  
Author(s):  
Markku Kaste ◽  
Henry Troupp

✓ Changes in the blood pressure, cerebral sinus pressure, cerebral venous oxygen tension, acid-base balance, respiratory frequency, and respiratory minute volume were studied in the rabbit after a lethal cold injury to the brain. About half of the animals responded to the injury with a quick rise in cerebral sinus pressure and in its relation to blood pressure (CSP/BP); in the other half, cerebral sinus pressure and the CSP/BP ratio rose more slowly. Changes in the CSP/BP ratio correlated well with criteria for changes in respiratory performance. The changes in cerebral venous oxygen tension were reasonably uniform: a dip during freezing, an overshoot to a mean of 1.6 times the original level (about 30 mm Hg) immediately after injury, a gradual return to the pretraumatic level, and then a drop to lower levels. The brain injury led to a respiratory alkalosis that became more pronounced the longer the animals lived. Considered with CSP/BP ratio, respiratory reaction to the brain injury may provide an early and accurate prognosis. The fact that at the time of death the cerebral perfusion pressure was still within a range believed safe for the brain shows that an actual brain injury, in addition to raised intracranial pressure, is important in such experiments and emphasizes the inappropriateness of comparing levels of intracranial pressure raised by a variety of methods.


1992 ◽  
Vol 76 (3) ◽  
pp. 415-421 ◽  
Author(s):  
David W. Newell ◽  
Rune Aaslid ◽  
Renate Stooss ◽  
Hans J. Reulen

✓ Intracranial pressure (ICP) and continuous transcranial Doppler ultrasound signals were monitored in 20 head-injured patients and simultaneous synchronous fluctuations of middle cerebral artery (MCA) velocity and B waves of the ICP were observed. Continuous simultaneous monitoring of MCA velocity, ICP, arterial blood pressure, and expired CO2 revealed that both velocity waves and B waves occurred despite a constant CO2 concentration in ventilated patients and were usually not accompanied by fluctuations in the arterial blood pressure. Additional recordings from the extracranial carotid artery during the ICP B waves revealed similar synchronous fluctuations in the velocity of this artery, strongly supporting the hypothesis that blood flow fluctuations produce the velocity waves. The ratio between ICP wave amplitude and velocity wave amplitude was highly correlated to the ICP (r = 0.81, p < 0.001). Velocity waves of similar characteristics and frequency, but usually of shorter duration, were observed in seven of 10 normal subjects in whom MCA velocity was recorded for 1 hour. The findings in this report strongly suggest that B waves in the ICP are a secondary effect of vasomotor waves, producing cerebral blood flow fluctuations that become amplified in the ICP tracing, in states of reduced intracranial compliance.


1982 ◽  
Vol 63 (1) ◽  
pp. 56-56
Author(s):  
E. S. Karashurov ◽  
S. E. Karashurov

Frequent complications of glomectomy are headaches and a mild, less-like state for several days or weeks after surgery, and sometimes hemi- and monoparesis. The reasons for these complications have not yet been revealed. In search of their explanation, we decided to study the volumetric blood flow of the brain and the acid-base state (ACS). Volumetric blood flow was studied by rheoencephalography (REG) in 43 patients, and acid base balance - in 100 patients (age from 22 to 67 years). The course of bronchial asthma before the operation in the examined patients was moderate and severe.


2021 ◽  
Vol 8 (29) ◽  
pp. 2639-2643
Author(s):  
Sruthy Unni ◽  
Ranju Sebastian ◽  
Elizabeth Joseph ◽  
Remani Kelan Kamalakshi ◽  
Jamsheena Muthira Parambath

BACKGROUND Anaesthesia for neurosurgery requires special considerations. The brain is enclosed in a rigid cranium, so the rise in intracranial pressure (ICP) which impairs cerebral perfusion pressure (CPP), results in irrepairable damage to various vital areas in the brain. Stable head position is required in long neurosurgical procedures. This is obtained with the use of clamps which fix the head rigidly. This is done usually under general anaesthesia because it produces intense painful stimuli leading to stimulation of sympathetic nervous system which in turn causes release of vasoconstrictive agents. This can impair perfusion in all organ systems. The increase in blood pressure due to sympathetic nervous system causes increase in blood flow. This causes increases in intracranial pressure which result in reduction in cerebral perfusion pressure once the auto regulatory limits are exceeded. We compared the effects of dexmedetomidine 1 µgm/kg and propofol 100 µgm/kg given as infusion over a period of 10 minutes before the induction of anaesthesia and continued till 5 minutes after pinning to attenuate the stress response while cranial pinning. In this study, we wanted to compare the effects of dexmedetomidine and propofol as infusion to attenuate the stress response while cranial pinning in patients undergoing neurosurgical procedures. METHODS This is a randomized interventional trial. Patients were divided into 2 groups of 20 each. Group 1 receiving dexmedetomidine and group 2 receiving propofol, both drugs given as infusion. Haemodynamic variables were monitored before and after cranial pinning. Data was analysed using IBM statistical package for social sciences (SPSS) statistics. The parameters recorded were analysed with the help of a statistician. RESULTS The two groups were comparable in demographic data. Incidence of tachycardia between group 1 and 2 showed that tachycardia to pinning was better controlled with propofol than dexmedetomidine (P < 0.05) which is statistically significant. There is no statistically significant difference in blood pressure values between group 1 and 2 after pinning. CONCLUSIONS From our study, we came to a conclusion that propofol was superior to dexmedetomidine in attenuating the heart rate response to cranial pinning. The effect of propofol and dexmedetomidine was comparable in attenuating the blood pressure response to cranial pinning. KEYWORDS Cranial Pinning, Dexmedetomidine, Propofol


2001 ◽  
Vol 280 (2) ◽  
pp. R481-R487 ◽  
Author(s):  
Robert J. Preston ◽  
Aaron P. Heenan ◽  
Larry A. Wolfe

In accordance with Stewart's physicochemical approach, the three independent determinants of plasma hydrogen ion concentration ([H+]) were measured at rest and during exercise in the follicular (FP) and luteal phase (LP) of the human menstrual cycle. Healthy, physically active women with similar physical characteristics were tested during either the FP ( n = 14) or LP ( n = 14). Arterialized blood samples were obtained at rest and after 5 min of upright cycling at both 70 and 110% of the ventilatory threshold (TVent). Measurements included plasma [H+], arterial carbon dioxide tension (PaCO2 ), total weak acid ([ATot]) as reflected by total protein, and the strong-ion difference ([SID]). The transition from rest to exercise in both groups resulted in a significant increase in [H+] at 70% TVentversus rest and at 110% TVent versus both rest and 70% TVent. No significant between-group differences were observed for [H+] at rest or in response to exercise. At rest in the LP, [ATot] and PaCO2 were significantly lower (acts to decrease [H+]) compared with the FP. This effect was offset by a reduction in [SID] (acts to increase [H+]). After the transition from rest to exercise, significantly lower [ATot] during the LP was again observed. Although the [SID] and PaCO2 were not significantly different between groups, trends for changes in these two variables were similar to changes in the resting state. In conclusion, mechanisms regulating [H+] exhibit phase-related differences to ensure [H+] is relatively constant regardless of progesterone-mediated ventilatory changes during the LP.


1979 ◽  
Vol 51 (2) ◽  
pp. 206-210 ◽  
Author(s):  
Gündüz Gücer ◽  
Lawrence J. Viernstein

✓ Intracranial pressure (ICP) was recorded continuously by telemetry in seven normal monkeys trained to eat, sleep, and live in a primate chair. Electroencephalography, electromyography, and blood pressure were also measured by conventional means. During wakefulness and all stages of sleep except desynchronized sleep, the ICP record showed small short-term variations in pressure. However, during desynchronized sleep, the mean ICP rose on the average to 170 ± 6 mm H2O above the ICP levels in the other states of sleep, and the pulsation pressure variation increased by a factor of three. The episodes occurred 10 ± 2 times during the night and lasted for 6.8 ± 1.4 minutes, during which the average systemic blood pressure decreased by 19 ± 1.6 mm Hg. These ICP waves occurring during desynchronized sleep resemble the plateau waves described by Lundberg, but are of smaller magnitude and they appear to be a normal characteristic of sleep in the macaque monkey. Bilateral sympathectomy of the superior cervical ganglia in four of the monkeys did not alter significantly the duration, amplitude, or frequency of occurrence of the ICP waves during desynchronized sleep.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Mazher Mohammed ◽  
Mona Elgazzaz ◽  
Clara Berdasco ◽  
Eric D Lazartigues

We previously reported that ADAM17 (aka tumor necrosis factor-α convertase) is critical for the development of hypertension in experimental models and patients. Recent studies highlighted that ADAM17’s formation of TNF-α relies on prior maturation of this sheddase, controlled by the rhomboid-like protein 2 (iRhom2) specifically in microglia. Genetic deletion of iRhom2 in mice shows significant attenuation of TNF-α and ADAM17 activity in a tissue specific manner. Here, we hypothesized that silencing iRhom2 activity specifically in the brain would decrease blood pressure (BP) in the DOCA-salt model of hypertension, in mice. Uninephrectomized mice were implanted subcutaneously (sc) with DOCA-pellets (50 mg) and provided with 1% saline in drinking water. In addition, mice were chronically implanted with an icv cannula connected to a sc osmotic minipump for delivery of: (1) iRhom2-siRNA (9.6 μg/kg/day), (2) scrambled siRNA (SCR 0.2 μg/kg/day), (3) ADAM17 antibody (ADAM17-Ab; 23.8 μg/kg/day) or (4) artificial cerebrospinal fluid (aCSF) for 2 weeks while BP was recorded by telemetry. DOCA-salt treatment led to a significant increase in BP in the control groups (SCR: 156 ±3 mmHg and aCSF: 161 ±1 mmHg; n=3/group; p<0.001) compared to baseline values (122 ±2 mmHg; n=12). ICV infusion of iRhom2-siRNA or ADAM17 neutralizing antibody for 2-weeks in DOCA-salt-treated mice resulted in a significant attenuation of BP (iRhom2-siRNA: 152 ±2 mmHg and ADAM17-Ab: 151 ±2 mmHg n=3/group, p<0.001). These data suggest that: 1) Selective silencing of iRhom2 from microglia is as potent as ADAM17 neutralization throughout the brain in lowering BP and 2) iRhom2 is a potential new therapeutic target for the treatment of salt-sensitive hypertension.


1978 ◽  
Vol 48 (5) ◽  
pp. 704-711 ◽  
Author(s):  
Julian S. Chestnut ◽  
Maurice S. Albin ◽  
Evelyn Gonzalez-Abola ◽  
Philippa Newfield ◽  
Joseph C. Maroon

✓ Moment-to-moment control of blood pressure is important in the management of the neurosurgical patient. The ideal agent to control blood pressure or induce hypotension should be non-toxic, maintain cerebrovascular autoregulation, and not alter cardiac output or change intracranial pressure. Intravenous nitroglycerin has been used to control blood pressure in 54 neurosurgical cases. This agent produces a rapid, controllable, but not precipitous fall in blood pressure without rebound, is non-toxic, may not alter cerebrovascular autoregulation, and does not raise intracranial pressure. Our clinical experience with intravenous nitroglycerin indicates that it has an important role as a hypotensive agent for the neurosurgical patient.


Sign in / Sign up

Export Citation Format

Share Document