Spinal evoked potentials in the primate: Neural substrate

1978 ◽  
Vol 49 (4) ◽  
pp. 551-557 ◽  
Author(s):  
Joseph F. Cusick ◽  
Joel Myklebust ◽  
Sanford J. Larson ◽  
Anthony Sances

✓ Summated responses evoked by peripheral nerve stimulation were recorded from electrodes located in the epidural and subdural spaces anterior and posterior to the monkey spinal cord. Segmental microsurgical resection of the dorsal columns both at the thoracic and cervical levels resulted in total obliteration of the response recorded rostral to these lesions. Isolated segmental dorsal column preservation did not significantly alter response latency or wave form recorded at the rostral electrodes. Bilateral cervical dorsolateral column resection also resulted in no discernible alterations of these responses. These data indicate that spinal evoked potentials recorded from levels rostral to their root entry zones arise almost exclusively from the dorsal columns.

1983 ◽  
Vol 58 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Walter J. Levy

✓ There is a need to monitor the motor system, but it has a different blood supply and a different location in the spinal cord from those measured by traditional somatosensory evoked potential monitoring. This paper reports a motor evoked potential monitoring system that uses direct spinal cord stimulation overlying the areas of the motor tract in the cord. In nine cats, evoked potentials were recorded from the dura, which gave a much faster main signal component than the traditional dorsal column evoked potentials, which were also recorded. This 100-m/sec signal was not affected by sectioning of the dorsal columns, which was verified histologically. This mode of monitoring the motor system can be used during surgery. It may also provide a better evaluation of patients after spinal cord trauma.


1982 ◽  
Vol 57 (4) ◽  
pp. 472-482 ◽  
Author(s):  
Stephen K. Powers ◽  
Catherine A. Bolger ◽  
Michael S. B. Edwards

✓ Using a CO2 laser, discrete thoracic spinal cord lesions were made in cats anesthetized with ketamine and xylazine (Rompun). Differences in cortical somatosensory evoked potentials (SEP's) produced with high-intensity stimulation (20 times the motor threshold) of each posterior tibial nerve were determined for nine different combinations of unilateral spinal cord lesions. The results of these studies show that nerve fibers in the ipsilateral dorsal column, the ipsilateral dorsal spinocerebellar tract, and the contralateral ventrolateral tracts with respect to the side of leg stimulation, contribute to cortical SEP's. A lesion of the dorsal spinocerebellar tract affected only the early waves (< 30 msec) of the SEP from leg stimulation ipsilateral to the side of the lesion, whereas a solitary lesion of the ventrolateral tract caused changes primarily in the amplitude of later waves (> 30 msec) of the SEP produced by contralateral leg stimulation. Lesions involving one-half of the dorsal column caused changes in the amplitude of both the early and late waves produced by stimulation ipsilateral to the side of the lesion. The effects of various combinations of lesions on the cortical SEP's were not additive, which indicates significant interaction between afferent pathways. These findings suggest that high-intensity peripheral nerve stimulation, which activates both C and A fibers, could be used intraoperatively to assess spinal cord function with more accuracy than the current practice of using a stimulus strength of twice the motor threshold. The importance of using anesthetic agents that do not depress cortical activity (which may affect the later components of the SEP) is also emphasized.


1984 ◽  
Vol 60 (6) ◽  
pp. 1317-1319 ◽  
Author(s):  
Alfred G. Kaschner ◽  
Wilhelm Sandmann ◽  
Heinz Larkamp

✓ This article describes a new flexible bipolar neuroelectrode which is inserted percutaneously into the epidural space for segmental spinal cord stimulation. This electrode was used in experiments with dogs and monkeys for recording cortical somatosensory evoked potentials in order to identify intraoperative spinal cord ischemia during periods of aortic occlusion.


2002 ◽  
Vol 96 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Allan D. O. Levi ◽  
Hector Dancausse ◽  
Xiuming Li ◽  
Suzanne Duncan ◽  
Laura Horkey ◽  
...  

Object. Partial restoration of hindlimb function in adult rats following spinal cord injury (SCI) has been demonstrated using a variety of transplantation techniques. The purpose of the present study was twofold: 1) to determine whether strategies designed to promote regeneration in the rat can yield similar results in the primate; and 2) to establish whether central nervous system (CNS) regeneration will influence voluntary grasping and locomotor function in the nonhuman primate. Methods. Ten cynomologus monkeys underwent T-11 laminectomy and resection of a 1-cm length of hemispinal cord. Five monkeys received six intercostal nerve autografts and fibrin glue containing acidic fibroblast growth factor (2.1 µg/ml) whereas controls underwent the identical laminectomy procedure but did not receive the nerve grafts. At 4 months postgrafting, the spinal cord—graft site was sectioned and immunostained for peripheral myelin proteins, biotinylated dextran amine, and tyrosine hydroxylase, whereas the midpoint of the graft was analyzed histologically for the total number of myelinated axons within and around the grafts. The animals underwent pre- and postoperative testing for changes in voluntary hindlimb grasping and gait. Conclusions. 1) A reproducible model of SCI in the primate was developed. 2) Spontaneous recovery of the ipsilateral hindlimb function occurred in both graft- and nongraft—treated monkeys over time without evidence of recovering the ability for voluntary tasks. 3) Regeneration of the CNS from proximal spinal axons into the peripheral nerve grafts was observed; however, the grafts did not promote regeneration beyond the lesion site. 4) The grafts significantly enhanced (p < 0.0001) the regeneration of myelinated axons into the region of the hemisected spinal cord compared with the nongrafted animals.


1985 ◽  
Vol 62 (5) ◽  
pp. 680-693 ◽  
Author(s):  
Blaine S. Nashold ◽  
Janice Ovelmen-Levitt ◽  
Robbin Sharpe ◽  
Alfred C. Higgins

✓ Direct spinal cord surface recordings of evoked spinal cord potentials have been made in 26 patients during neurosurgical procedures for intractable pain. Monopolar recordings at the dorsal root entry zone after peripheral nerve stimulation have been made at multiple levels for segmental localization and to monitor the state of the afferent path and dorsal horn. Dorsal root and dorsal column conduction has been tested on diseased and intact sides. Normal afferent conduction velocity was found to have an overall mean of 61.33 m/sec for cervicothoracic and lumbosacral peripheral nerves, and 50 m/sec for the dorsal columns. The normal mean amplitude for the slow negative wave (N1) recorded at the root entry was 52.54 µV, while that for the dorsal column conducted response recorded within 4 cm of the stimulus point on the dorsal columns was 347.5 µV. Several different placements of stimulating and recording electrodes are described, as well as their application. An interpretation of the resulting data is proposed.


1974 ◽  
Vol 41 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Sanford J. Larson ◽  
Anthony Sances ◽  
Donald H. Riegel ◽  
Glenn A. Meyer ◽  
Donald E. Dallmann ◽  
...  

✓ In 18 patients with cancer and intractable pain, capacitatively coupled pulses of 0.25 msec duration were delivered transcutaneously at 100 Hz to sets of five in-line electrodes implanted subdurally over the dorsal columns. Averaged somatosensory-evoked potentials were recorded from scalp electrodes before, during, and after application of current. All but one patient experienced relief of pain during stimulation, persisting for as long as several hours afterward. Eleven patients developed hyperactive deep reflexes, pathological reflexes, and decreased perception of joint rotation, pain, and touch below the level of current application. Somatosensory-evoked potential amplitudes were markedly reduced. All neurological findings returned to control values within 1 hour after each of repeated applications of current. Histological examination of spinal cord sections from four cancer patients showed no changes secondary to long-term current application. Similar currents were applied to the spinal cord of 15 monkeys with chronically implanted bipolar recording or stimulating electrodes over the lower, middle, and upper thoracic cord, in nucleus ventralis posterior lateralis (VPL), and over the sensory motor cortex (SMC). With application of current, the responses in VPL and SMC to peripheral stimulation were abolished. Evoked potential responses were abolished between bipolar stimulating electrodes and bipolar recording electrodes separated by the five in-line electrodes used to supply the 100 Hz current. However, when both stimulating and recording electrodes were either above or below the five in-line electrode set, evoked responses were unaffected. The findings indicate that applied currents blocked neuronal transmission by producing local changes in the cord. The prolonged alteration of cerebral evoked potentials and relief of pain, however, could also be related to involvement of supraspinal neurons.


1992 ◽  
Vol 76 (2) ◽  
pp. 280-291 ◽  
Author(s):  
R. John Hurlbert ◽  
Charles H. Tator ◽  
Michael G. Fehlings ◽  
Greg Niznik ◽  
R. Dean Linden

✓ Although the assessment of spinal cord function by electrophysiological techniques has become important in both clinical and research environments, current monitoring methods do not completely evaluate all tracts in the spinal cord. Somatosensory and motor evoked potentials primarily reflect dorsal column and pyramidal tract integrity, respectively, but do not directly assess the status of the ventral funiculus. The present study was undertaken to evaluate the use of evoked potentials, elicited by direct cerebellar stimulation, in monitoring the ventral component of the rodent spinal cord. Twenty-nine rats underwent epidural anodal stimulation directly over the cerebellar cortex, with recording of evoked responses from the lower thoracic spinal cord, both sciatic nerves, and/or both gastrocnemius muscles. Stimulation parameters were varied to establish normative characteristics. The pathways conducting these “posterior fossa evoked potentials” were determined after creation of various lesions of the cervical spinal cord. The evoked potential recorded from the thoracic spinal cord consisted of five positive (P1 to P5) and five negative (N1 to N5) peaks. The average conduction velocity (± standard deviation) of the earliest wave (P1) was 53 ± 4 m/sec, with a latency of 1.24 ± 0.10 msec. The other components followed within 4 msec from stimulus onset. Unilateral cerebellar stimulation resulted in bilateral sciatic nerve and gastrocnemius muscle responses; there were no significant differences (p > 0.05) in the thresholds, amplitudes, or latencies of these responses elicited by right- versus left-sided stimulation. Recordings performed following creation of selective lesions of the cervical cord indicated that the thoracic response was carried primarily in the ventral funiculus while the sciatic and gastrocnemius responses were mediated through the dorsal half of the spinal cord. It is concluded that the posterior fossa evoked potential has research value as a method of monitoring pathways within the ventral spinal cord of the rat, and should be useful in the study of spinal cord injury.


1972 ◽  
Vol 36 (4) ◽  
pp. 402-406 ◽  
Author(s):  
Thomas J. Croft ◽  
Jerald S. Brodkey ◽  
Frank E. Nulsen

✓ Cortical evoked potentials in anesthetized cats were recorded by a noninvasive averaging technique as a means of estimating spinal cord damage. Graded pressure on the spinal cord produced reversible blocking of these potentials. With this type of trauma, block of motor transmission through the cord paralleled the block of sensory transmission, and each seemed to be a sensitive indicator of spinal cord function. The possible use of such monitoring in anesthetized patients undergoing spinal operations is discussed.


1975 ◽  
Vol 42 (3) ◽  
pp. 296-300 ◽  
Author(s):  
Heinrich Bantli ◽  
James R. Bloedel ◽  
Phudhiphorn Thienprasit

✓ Experiments were performed on rhesus monkeys to examine the hypothesis that stimulation with dorsal column electrodes of the type implanted clinically could alter the responses evoked in supraspinal nuclei through pathways in the ventral quadrant of the spinal cord. Dorsal column stimulation did produce changes in responses evoked in supraspinal nuclei; this effect could not be ascribed to a conduction block in ascending pathways. These results suggest that the mechanism of action of the dorsal column stimulator need not be dependent on interactions in the dorsal horn.


1987 ◽  
Vol 67 (4) ◽  
pp. 600-602 ◽  
Author(s):  
Theodore W. Eller ◽  
Lawrence P. Bernstein ◽  
Richard S. Rosenberg ◽  
David G. McLone

✓ A case of congenital tethered cervical spinal cord is presented in a young adult. Metrizamide computerized tomography was the most useful imaging technique for identifying the tethered spinal cord. Intraoperative somatosensory evoked potentials correlated well with clinical improvement following surgery.


Sign in / Sign up

Export Citation Format

Share Document