Etoposide-induced blood-brain barrier disruption

1984 ◽  
Vol 61 (4) ◽  
pp. 674-678 ◽  
Author(s):  
Melvin K. Spigelman ◽  
Rosario A. Zappulla ◽  
James Johnson ◽  
Stanley J. Goldsmith ◽  
Leonard I. Malis ◽  
...  

✓ The intracarotid infusion of the anti-neoplastic compound, etoposide, has been shown to exert a dose-dependent effect on blood-brain barrier (BBB) permeability. Etoposide, however, is formulated in a complex solvent solution containing alcohol, Tween 80, polyethylene glycol 300, and citric acid. To investigate the contribution of the solvent solution to BBB disruption, the authors studied Sprague-Dawley rats after the internal carotid artery infusion of the solvent solution with and without the addition of etoposide. Experiments were performed at four doses of drug and/or solvent. Disruption of the BBB was evaluated qualitatively by the appearance of the systemically administered dye, Evans blue, in the cerebral hemispheres and quantitatively by the ratio of gamma counts of the technetium-labeled chelate of diethylenetriaminepentaacetic acid (99mTc-DTPA) in the ipsilateral:contralateral hemisphere. Significant barrier opening was obtained in all four groups of animals infused with solvent plus etoposide. In the corresponding groups of rats infused with the solvent solution alone, BBB disruption was markedly lower. Only in the group infused with the largest dose of solvent was the hemispheric ratio of 99mTc-DTPA significantly different from saline-infused animals. Each of the groups with solvent plus etoposide had 99mTc-DTPA ratios significantly different from the control group. Intracarotid infusion and subsequent BBB disruption were well tolerated by the animals receiving either solvent alone or solvent and etoposide. Disruption of the BBB secondary to the intracarotid infusion of etoposide is primarily caused by the drug itself and not by the solvent solution.

1996 ◽  
Vol 85 (6) ◽  
pp. 1056-1065 ◽  
Author(s):  
Bernhard Zünkeler ◽  
Richard E. Carson ◽  
Jeff Olson ◽  
Ronald G. Blasberg ◽  
Hetty Devroom ◽  
...  

✓ Hyperosmolar blood-brain barrier disruption (HBBBD), produced by infusion of mannitol into the cerebral arteries, has been used in the treatment of brain tumors to increase drug delivery to tumor and adjacent brain. However, the efficacy of HBBBD in brain tumor therapy has been controversial. The goal of this study was to measure changes in vascular permeability after HBBBD in patients with malignant brain tumors. The permeability (K1) of tumor and normal brain blood vessels was measured using rubidium-82 and positron emission tomography before and repeatedly at 8- to 15-minute intervals after HBBBD. Eighteen studies were performed in 13 patients, eight with glioblastoma multiforme and five with anaplastic astrocytoma. The HBBBD increased K1 in all patients. Baseline K1 values were 2.1 ± 1.4 and 34.1 ± 22.1 µl/minute/ml (± standard deviation) for brain and tumor, respectively. The peak absolute increases in K1 following HBBBD were 20.8 ± 11.7 and 19.7 ± 10.7 µl/minute/ml for brain and tumor, corresponding to percentage increases of approximately 1000% in brain and approximately 60% in tumor. The halftimes for return of K1 to near baseline for brain and tumor were 8.1 ± 3.8 and 4.2 ± 1.2 minutes, respectively. Simulations of the effects of HBBBD made using a very simple model with intraarterial methotrexate, which is exemplary of drugs with low permeability, indicate that 1) total exposure of the brain and tumor to methotrexate, as measured by the methotrexate concentration-time integral (or area under the curve), would increase with decreasing infusion duration and would be enhanced by 130% to 200% and by 7% to 16%, respectively, compared to intraarterial infusion of methotrexate alone; and 2) exposure time at concentrations above 1 µM, the minimal concentration required for the effects of methotrexate, would not be enhanced in tumor and would be enhanced by only 10% in brain. Hyperosmolar blood-brain barrier disruption transiently increases delivery of water-soluble compounds to normal brain and brain tumors. Most of the enhancement of exposure results from trapping the drug within the blood-brain barrier, an effect of the very transient alteration of the blood-brain barrier by HBBBD. Delivery is most effective when a drug is administered within 5 to 10 minutes after disruption. However, the increased exposure and exposure time that occur with methotrexate, the permeability of which is among the lowest of the agents currently used clinically, are limited and the disproportionate increase in brain exposure, compared to tumor exposure, may alter the therapeutic index of many drugs.


1989 ◽  
Vol 256 (2) ◽  
pp. R443-R447 ◽  
Author(s):  
W. C. Cosolo ◽  
P. Martinello ◽  
W. J. Louis ◽  
N. Christophidis

Blood-brain barrier disruption with a hyperosmolar agent, mannitol, has previously been demonstrated to increase intracerebral methotrexate levels in rats. To determine the optimum conditions for blood-brain barrier disruption without producing neurological sequelae, adult Sprague-Dawley rats were infused with mannitol via the internal carotid artery at rates varying from 0.25 to 0.5 ml.s-1.kg-1. Methotrexate and Evans blue were used as markers of blood-brain barrier disruption. The optimum rate of mannitol that produced blood-brain barrier disruption without neurological sequelae was 0.25 ml.s-1.kg-1 for 20 s. The duration of blood-brain barrier opening was maximal for approximately 5 min and then rapidly reversed. Methotrexate levels on the mannitol-infused side were four to five times that of the noninfused hemisphere. Light microscopy and electron microscopy did not demonstrate any consistent changes that could be attributed to blood-brain barrier disruption nor did it elucidate the mechanism. This model should prove useful in the investigation of the treatment of intracerebral tumors with blood-brain barrier disruption. This study shows that maximal intracerebral methotrexate levels were obtained when methotrexate was infused before or within 5 min of the mannitol infusion.


1990 ◽  
Vol 73 (4) ◽  
pp. 585-593 ◽  
Author(s):  
Mark Bernstein ◽  
Tom Marotta ◽  
Patricia Stewart ◽  
Jennifer Glen ◽  
Lothar Resch ◽  
...  

✓ Changes in normal rat brain were studied acutely, and at 3, 6, 9, and 12 months following interstitial brachytherapy with high-activity 125I seeds. An 80-Gy radiation dose was administered to an area with a 5.5-mm radius. Effects were measured with magnetic resonance (MR) imaging (with and without gadolinium enhancement), leakage of horseradish peroxidase(HRP), electron microscopy, and light microscopy. Significant histological damage was seen at radiation doses above 295 Gy, and breakdown of the blood-brain barrier was observed only in tissue receiving a dose of 165 Gy or greater. Blood-brain barrier breakdown increased up to the 6-month time point, and thereafter appeared to stabilize or decrease. The area of blood-brain barrier disruption indicated by gadolinium-enhanced MR imaging was greater than that indicated by leakage of HRP.


Therapy ◽  
2006 ◽  
Vol 3 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rose Marie Tyson ◽  
Dale F Kraemer ◽  
Matthew A Hunt ◽  
Leslie L Muldoon ◽  
Peter Orbay ◽  
...  

Author(s):  
Arne Potreck ◽  
Matthias A. Mutke ◽  
Charlotte S. Weyland ◽  
Johannes A. R. Pfaff ◽  
Peter A. Ringleb ◽  
...  

AbstractDespite successful recanalization of large-vessel occlusions in acute ischemic stroke, individual patients profit to a varying degree. Dynamic susceptibility-weighted perfusion and dynamic T1-weighted contrast-enhanced blood-brain barrier permeability imaging may help to determine secondary stroke injury and predict clinical outcome. We prospectively performed perfusion and permeability imaging in 38 patients within 24 h after successful mechanical thrombectomy of an occlusion of the middle cerebral artery M1 segment. Perfusion alterations were evaluated on cerebral blood flow maps, blood-brain barrier disruption (BBBD) visually and quantitatively on ktrans maps and hemorrhagic transformation on susceptibility-weighted images. Visual BBBD within the DWI lesion corresponded to a median ktrans elevation (IQR) of 0.77 (0.41–1.4) min−1 and was found in all 7 cases of hypoperfusion (100%), in 10 of 16 cases of hyperperfusion (63%), and in only three of 13 cases with unaffected perfusion (23%). BBBD was significantly associated with hemorrhagic transformation (p < 0.001). While BBBD alone was not a predictor of clinical outcome at 3 months (positive predictive value (PPV) = 0.8 [0.56–0.94]), hypoperfusion occurred more often in patients with unfavorable clinical outcome (PPV = 0.43 [0.10–0.82]) compared to hyperperfusion (PPV = 0.93 [0.68–1.0]) or unaffected perfusion (PPV = 1.0 [0.75–1.0]). We show that combined perfusion and permeability imaging reveals distinct infarct signatures after recanalization, indicating the severity of prior ischemic damage. It assists in predicting clinical outcome and may identify patients at risk of stroke progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailey Hiles-Murison ◽  
Andrew P. Lavender ◽  
Mark J. Hackett ◽  
Joshua J. Armstrong ◽  
Michael Nesbit ◽  
...  

AbstractRepeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood–brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


Sign in / Sign up

Export Citation Format

Share Document