Pain suppression induced by electrical stimulation of the pontine parabrachial region

1985 ◽  
Vol 62 (3) ◽  
pp. 397-407 ◽  
Author(s):  
Antonio A. F. DeSalles ◽  
Yoichi Katayama ◽  
Donald P. Becker ◽  
Ronald L. Hayes

✓ Cholinergic stimulation by microinjection of drugs into a region surrounding the lateral half of the brachium conjunctivum selectively produces a non-opiate form of pain suppression in the cat. Since this suppression does not appear to involve neural systems that mediate morphine analgesia, stimulation of this pontine parabrachial region (PBR) may potentially be useful for control of human pain resistant or tolerant to opiate treatment. Because of technical problems associated with the clinical use of microinjection techniques in the human brain, we investigated whether electrical stimulation of the PBR can produce pain suppression similar to pain suppression produced by cholinergic stimulation. The results indicate that electrical stimulation of an area generally corresponding to the PBR can also produce significant pain suppression. Although the PBR is a region previously implicated in a variety of behavioral and physiological functions, the stimulation parameters that produce maximal pain suppressive effects (namely, low frequency and relatively low intensity) were not associated with noticeable changes in such functions. The prolonged onset period and persistent analgesic effects outlasting the period of stimulation — features that have been reported in other studies of brain stimulation-produced pain suppression — were observed in the present study. The time course of pain suppression did not parallel other changes in behavioral and physiological functions. These data indicate that electrical stimulation of the PBR, under certain stimulation parameters, can activate previously demonstrated neural populations related to pain suppression without affecting neural elements contributing to other behavioral or physiological functions. The authors suggest that electrical stimulation of the PBR may be clinically applicable for treatment of human pain.

2021 ◽  
pp. 1-10
Author(s):  
Michihiro Osumi ◽  
Daisuke Shimizu ◽  
Yuki Nishi ◽  
Shu Morioka

Background: Patients with brachial plexus avulsion (BPA) usually experience phantom sensations and phantom limb pain (PLP) in the deafferented limb. It has been suggested that evoking the sensation of touch in the deafferented limb by stimulating referred sensation areas (RSAs) on the cheek or shoulder might alleviate PLP. However, feasible rehabilitation techniques using this approach have not been reported. Objective: The present study sought to examine the analgesic effects of simple electrical stimulation of RSAs in BPA patients with PLP. Methods: Study 1: Electrical stimulation of RSAs for 60 minutes was conducted for six BPA patients suffering from PLP to examine short-term analgesic effects. Study 2: A single case design experiment was conducted with two BPA patients to investigate whether electrical stimulation of RSAs was more effective for alleviating PLP than control electrical stimulation (electrical stimulation of sites on side opposite to the RSAs), and to elucidate the long-term effects of electrical stimulation of RSAs. Results: Study 1: Electrical stimulation of RSAs evoked phantom touch sensations in the deafferented limb, and significantly alleviated PLP (p <  0.05). Study 2: PLP was alleviated more after electrical stimulation on RSAs compared with control electrical stimulation (p <  0.05). However, the analgesic effects of electrical stimulation on RSAs were observed only in the short term, not in the long term (p >  0.05). Conclusions: Electrical stimulation of RSAs not only evoked phantom touch sensation but also alleviated PLP in the short term. The results indicate that electrical stimulation of RSAs may provide a useful practical rehabilitation technique for PLP. Future studies will be required to clarify the mechanisms underlying immediate PLP alleviation via electrical stimulation of RSAs.


2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


1993 ◽  
Vol 69 (3) ◽  
pp. 953-964 ◽  
Author(s):  
P. W. Glimcher ◽  
D. L. Sparks

1. The first experiment of this study determined the effects of low-frequency stimulation of the monkey superior colliculus on spontaneous saccades in the dark. Stimulation trains, subthreshold for eliciting short-latency fixed-vector saccades, were highly effective at biasing the metrics (direction and amplitude) of spontaneous movements. During low-frequency stimulation, the distribution of saccade metrics was biased toward the direction and amplitude of movements induced by suprathreshold stimulation of the same collicular location. 2. Low-frequency stimulation biased the distribution of saccade metrics but did not initiate movements. The distribution of intervals between stimulation onset and the onset of the next saccade did not differ significantly from the distribution of intervals between an arbitrary point in time and the onset of the next saccade under unstimulated conditions. 3. Results of our second experiment indicate that low-frequency stimulation also influenced the metrics of visually guided saccades. The magnitude of the stimulation-induced bias increased as stimulation current or frequency was increased. 4. The time course of these effects was analyzed by terminating stimulation immediately before, during, or after visually guided saccades. Stimulation trains terminated at the onset of a movement were as effective as stimulation trains that continued throughout the movement. No effects were observed if stimulation ended 40–60 ms before the movement began. 5. These results show that low-frequency collicular stimulation can influence the direction and amplitude of spontaneous or visually guided saccades without initiating a movement. These data are compatible with the hypothesis that the collicular activity responsible for specifying the horizontal and vertical amplitude of a saccade differs from the type of collicular activity that initiates a saccade.


2004 ◽  
Vol 100 (6) ◽  
pp. 997-1001 ◽  
Author(s):  
Mitsuhiro Ogura ◽  
Naoyuki Nakao ◽  
Ekini Nakai ◽  
Yuji Uematsu ◽  
Toru Itakura

Object. Although chronic electrical stimulation of the globus pallidus (GP) has been shown to ameliorate motor disabilities in Parkinson disease (PD), the underlying mechanism remains to be clarified. In this study the authors explored the mechanism for the effects of deep brain stimulation of the GP by investigating the changes in neurotransmitter levels in the cerebrospinal fluid (CSF) during the stimulation. Methods. Thirty patients received chronic electrical stimulation of the GP internus (GPi). Clinical effects were assessed using the Unified PD Rating Scale (UPDRS) and the Hoehn and Yahr Staging Scale at 1 week before surgery and at 6 and 12 months after surgery. One day after surgery, CSF samples were collected through a ventricular tube before and 1 hour after GPi stimulation. The concentration of neurotransmitters such as γ-aminobutyric acid (GABA), noradrenaline, dopamine, and homovanillic acid (HVA) in the CSF was measured using high-performance liquid chromatography. The treatment was effective for tremors, rigidity, and drug-induced dyskinesia. The concentration of GABA in the CSF increased significantly during stimulation, although there were no significant changes in the level of noradrenaline, dopamine, and HVA. A comparison between an increased rate of GABA concentration and a lower UPDRS score 6 months postimplantation revealed that the increase in the GABA level correlated with the stimulation-induced clinical effects. Conclusions. Stimulation of the GPi substantially benefits patients with PD. The underlying mechanism of the treatment may involve activation of GABAergic afferents in the GP.


2006 ◽  
Vol 32 (1) ◽  
pp. 74-80 ◽  
Author(s):  
B. S. Shenkman ◽  
E. V. Lyubaeva ◽  
D. V. Popov ◽  
A. I. Netreba ◽  
O. S. Tarasova ◽  
...  

1987 ◽  
Vol 96 (4) ◽  
pp. 349-361 ◽  
Author(s):  
Mark J. Maslan ◽  
Josef M. Miller

As a result of practical considerations, histopathologic findings of the temporal bone in humans with cochlear prosthesis implants have been limited. This project attempts to better define safe parameters of electrical stimulation of the inner ear and compare the safe limits of intracochlear vs. extracochlear stimulation sites. Guinea pigs were implanted with single electrodes either on the promontory or in the scala tympani and were stimulated relative to a remote indifferent for 12 hours distributed over a 4-week period. Electrical auditory brainstem evoked responses (EABRs) were tested before and after each of four 3-hour stimulation sessions. Six weeks after implantation, the animals were killed, and their cochleas were examined under the scanning electron microscope. Intracochlear electrodes exhibited thresholds for damage well below one half of that found for most extracochlear stimulation sites. The function-relating damage threshold (in amperes) to frequency of intracochlear stimulation is represented by two straight lines, with an intercept of 1 kHz. The low-frequency limb exhibited a slope of 3 to 4 dB/octave, whereas the high-frequency limb exhibited a slope of 9 to 10 dB/octave. Extracochlear results were too variable to permit speculation. Changes in EABRs were only variably related to histopathologic findings.


1999 ◽  
Vol 276 (2) ◽  
pp. R331-R339 ◽  
Author(s):  
H. Gissel ◽  
T. Clausen

In isolated rat extensor digitorum longus (EDL) muscle mounted for isometric contractions, chronic low-frequency electrical stimulation was found to lead to an increased uptake of45Ca (154% above control after 240 min) and a progressive accumulation of Ca2+ (85% above control after 240 min). In soleus, however, this treatment led to a small, but significant, increase in 45Ca uptake (30% above control after 180 min) but no significant accumulation of Ca2+. In muscles mounted for isotonic contractions without any external load, electrical stimulation gave rise to a larger45Ca uptake and accumulation of Ca2+ in both EDL and soleus. These uptakes of Ca2+ coincided with an accumulation of Na+. During isometric or isotonic contractions, stimulation at 40 Hz increased the initial (60 s) rate of 45Ca uptake in soleus muscle 15- and 30-fold, respectively. The stimulation-induced increase in 45Ca uptake was only reduced by 17% by the Ca2+-channel blockers nifedipine and verapamil but was blocked by tetrodotoxin. The initial rate of stimulation-induced 22Na and45Ca uptake was correlated ( r = 0.80; P < 0.003). Stimulation of Na+ channels with veratridine increased 45Ca uptake by 93 and 139% in soleus and EDL, respectively ( P < 0.001), effects that were abolished by tetrodotoxin. The results indicate that in skeletal muscle, excitation induces a considerable influx of Ca2+, mediated by Na+ channels.


Sign in / Sign up

Export Citation Format

Share Document