Excitation-induced Ca2+uptake in rat skeletal muscle

1999 ◽  
Vol 276 (2) ◽  
pp. R331-R339 ◽  
Author(s):  
H. Gissel ◽  
T. Clausen

In isolated rat extensor digitorum longus (EDL) muscle mounted for isometric contractions, chronic low-frequency electrical stimulation was found to lead to an increased uptake of45Ca (154% above control after 240 min) and a progressive accumulation of Ca2+ (85% above control after 240 min). In soleus, however, this treatment led to a small, but significant, increase in 45Ca uptake (30% above control after 180 min) but no significant accumulation of Ca2+. In muscles mounted for isotonic contractions without any external load, electrical stimulation gave rise to a larger45Ca uptake and accumulation of Ca2+ in both EDL and soleus. These uptakes of Ca2+ coincided with an accumulation of Na+. During isometric or isotonic contractions, stimulation at 40 Hz increased the initial (60 s) rate of 45Ca uptake in soleus muscle 15- and 30-fold, respectively. The stimulation-induced increase in 45Ca uptake was only reduced by 17% by the Ca2+-channel blockers nifedipine and verapamil but was blocked by tetrodotoxin. The initial rate of stimulation-induced 22Na and45Ca uptake was correlated ( r = 0.80; P < 0.003). Stimulation of Na+ channels with veratridine increased 45Ca uptake by 93 and 139% in soleus and EDL, respectively ( P < 0.001), effects that were abolished by tetrodotoxin. The results indicate that in skeletal muscle, excitation induces a considerable influx of Ca2+, mediated by Na+ channels.

2019 ◽  
Vol 16 (6) ◽  
pp. 822-830
Author(s):  
Hiroyuki Tamaki ◽  
Kengo Yotani ◽  
Futoshi Ogita ◽  
Keishi Hayao ◽  
Hikari Kirimto ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


2006 ◽  
Vol 32 (1) ◽  
pp. 74-80 ◽  
Author(s):  
B. S. Shenkman ◽  
E. V. Lyubaeva ◽  
D. V. Popov ◽  
A. I. Netreba ◽  
O. S. Tarasova ◽  
...  

2003 ◽  
Vol 95 (2) ◽  
pp. 577-583 ◽  
Author(s):  
Jianhua Li ◽  
Nicholas C. King ◽  
Lawrence I. Sinoway

Previous studies have suggested that activation of ATP-sensitive P2X receptors in skeletal muscle play a role in mediating the exercise pressor reflex (Li J and Sinoway LI. Am J Physiol Heart Circ Physiol 283: H2636–H2643, 2002). To determine the role ATP plays in this reflex, it is necessary to examine whether muscle interstitial ATP (ATPi) concentrations rise with muscle contraction. Accordingly, in this study, muscle contraction was evoked by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in 12 decerebrate cats. Muscle ATPi was collected from microdialysis probes inserted in the muscle. ATP concentrations were determined by the HPLC method. Electrical stimulation of the ventral roots at 3 and 5 Hz increased mean arterial pressure by 13 ± 2 and 16 ± 3 mmHg ( P < 0.05), respectively, and it increased ATP concentration in contracting muscle by 150% ( P < 0.05) and 200% ( P < 0.05), respectively. ATP measured in the opposite control limb did not rise with ventral root stimulation. Section of the L7 and S1 dorsal roots did not affect the ATPi seen with 5-Hz ventral root stimulation. Finally, ventral roots stimulation sufficient to drive motor nerve fibers did not increase ATP in previously paralyzed cats. Thus ATPi is not largely released from sympathetic or motor nerves and does not require an intact afferent reflex pathway. We conclude that ATPi is due to the release of ATP from contracting skeletal muscle cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Esteban R. Quezada ◽  
Alexis Díaz-Vegas ◽  
Enrique Jaimovich ◽  
Mariana Casas

The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related to muscle plasticity. A regulation of muscular tropism associated with the MCU has also been described. However, the role of transient cytosolic calcium signals and signaling pathways related to muscle plasticity over the regulation of gene expression of the MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 μM exogenous ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting conditions (without ES) increased mRNA levels of MCU, pointing out the importance of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU, MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the MCU complex can be regulated by electrical stimuli in a frequency-dependent manner. The changes observed in mRNA levels may be related to changes in the mitochondria, associated with the phenotypic transition from a fast- to a slow-type muscle, according to the described effect of this stimulation frequency on muscle phenotype. The decrease in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may be a regulator of the MCU complex. Moreover, our results suggest that this regulation is part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.


1990 ◽  
Vol 45 (6) ◽  
pp. 663-670 ◽  
Author(s):  
Virginia Massheimer ◽  
Luis M. Fernandez ◽  
Ana R. de Boland

Abstract Previous work has shown that 1,25-dihydroxy-vitamin D 3 rapidly increases calmodulin levels of skeletal muscle membranes without altering the muscle cell calmodulin content. Therefore, the effects of the sterol on the binding of calmodulin to specific muscle membrane proteins were investigated. Soleus muscles from vitamin D-deficient chicks were treated in vitro for short intervals (5-15 min) with physiological concentrations of 1,25-dihydroxy-vitamin D3. Proteins of mitochondria and microsomes isolated by differential centrifugation were separated on sodium dodecyl sulfate polyacrylamide gels. Calmodulin-binding proteins were identified by a [125I]calmodulin gel overlay procedure followed by autoradiography. 1,25-Dihydroxy- vitamin D3 increased the binding of labelled calmodulin to a major, calcium-independent, calmodulin-binding protein of 28 Kda localized in microsomes, and to minor calmodulin- binding proteins of 78 and 130 Kda proteins localized in mitochondria. The binding of [125I]calmodulin to these proteins was abolished by flufenazine or excess non-radioactive calmodulin. 1,25-Dihydroxy-vitamin D3 rapidly increased muscle tissue Ca uptake and cyclic AM P levels and stimulated the phosphorylation of several membrane proteins including those whose calmodulin-binding capacity potentiates. Analogously to the sterol, forskolin increased membrane calmodulin content, calmodulin binding to the 28 Kda microsomal protein and 45Ca uptake by soleus muscle preparations. Forskolin also induced a similar profile of changes in muscle membrane protein phosphorylation as the hormone. These results suggest that 1,25- dihydroxy-vitamin D 3 affects calmodulin distribution in muscle cells through cyclic AMP-dependent phosphorylation of membrane calmodulin-binding proteins. These changes may play a role in the stimulation of muscle Ca uptake by the sterol.


1987 ◽  
Vol 96 (4) ◽  
pp. 349-361 ◽  
Author(s):  
Mark J. Maslan ◽  
Josef M. Miller

As a result of practical considerations, histopathologic findings of the temporal bone in humans with cochlear prosthesis implants have been limited. This project attempts to better define safe parameters of electrical stimulation of the inner ear and compare the safe limits of intracochlear vs. extracochlear stimulation sites. Guinea pigs were implanted with single electrodes either on the promontory or in the scala tympani and were stimulated relative to a remote indifferent for 12 hours distributed over a 4-week period. Electrical auditory brainstem evoked responses (EABRs) were tested before and after each of four 3-hour stimulation sessions. Six weeks after implantation, the animals were killed, and their cochleas were examined under the scanning electron microscope. Intracochlear electrodes exhibited thresholds for damage well below one half of that found for most extracochlear stimulation sites. The function-relating damage threshold (in amperes) to frequency of intracochlear stimulation is represented by two straight lines, with an intercept of 1 kHz. The low-frequency limb exhibited a slope of 3 to 4 dB/octave, whereas the high-frequency limb exhibited a slope of 9 to 10 dB/octave. Extracochlear results were too variable to permit speculation. Changes in EABRs were only variably related to histopathologic findings.


1997 ◽  
Vol 272 (5) ◽  
pp. H2369-H2376 ◽  
Author(s):  
R. L. Davisson ◽  
O. S. Possas ◽  
S. P. Murphy ◽  
S. J. Lewis

Skeletal muscle vasculature of the hindlimb is innervated by a sympathetic noncholinergic vasodilator system. The aim of this study was to determine whether this vasodilator system may represent postganglionic lumbar sympathetic neurons that synthesize and release nitric oxide (NO) or related NO-containing factors. We examined whether NO synthase (NOS)-positive postganglionic lumbar nerves innervate the hindlimb vasculature of the rat and whether the hindlimb vasodilation produced by electrical stimulation of the lumbar sympathetic chain of anesthetized rats is reduced after the systemic administration of the specific inhibitor of neuronal NOS 7-nitroindazole (7-NI). Subpopulations of lumbar sympathetic cell bodies stained intensely for NOS. Postganglionic fibers and varicosities within the iliac and femoral arteries also stained for NOS. Double ligation of the lumbar chain demonstrated that NOS was transported from the cell bodies toward the peripheral terminals. Low-intensity electrical stimulation of the lumbar chain produced a pronounced hindlimb vasodilation that was markedly diminished by pretreatment with 7-NI (45 mg/kg i.v.). In contrast, the vasodilator potency of acetylcholine and S-nitrosocysteine were augmented by 7-NI. These results suggest that postganglionic lumbar sympathetic neurons may synthesize and release NO-containing factors.


Sign in / Sign up

Export Citation Format

Share Document