Subtle deterioration in shunted childhood hydrocephalus

1986 ◽  
Vol 65 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Arno Fried ◽  
Kenneth Shapiro

✓ Eighteen hydrocephalic children who presented with subtle deterioration when their shunts malfunctioned were studied during shunt revision by means of the pressure-volume index (PVI) technique. Bolus manipulation of cerebrospinal fluid (CSF) was used to determine the PVI and the resistance to the absorption of CSF (Ro). Ventricular size was moderately to severely enlarged in all the children. Steady-state intracranial pressure (ICP) at the time of shunt revision was 17.5 ± 7.3 mm Hg (range 8 to 35 mm Hg). Pressure waves could not be induced by bolus injections in the 8- to 35-mm Hg range of ICP tested. The mean ± standard deviation (SD) of the predicted normal PVI for this group was 18.5 ± 2.7 ml. The mean ± standard error of the mean of the measured PVI was 35.5 ± 2.1 ml, which represented a 187% ± 33% (± SD) increase in volume-buffering capacity (p < 0.001). The ICP did not fall after bolus injections in three children, so that the Ro could not be measured. In the remaining 15 patients, Ro increased linearly as a function of ICP (r = 0.74, p < 0.001). At ICP's below 20 mm Hg, Ro ranged from 2.0 to 5.0 mm Hg/ml/min, but increased to as high as 21 mm Hg/ml/min when ICP was above 20 mm Hg. This study documents that subtle deterioration in shunted hydrocephalic children is accompanied by abnormally compliant pressure-volume curves. These children develop ventricular enlargement and neurological deterioration without acute episodic pressure waves. The biomechanical profile of this group differs from other children with CSF shunts.

1986 ◽  
Vol 64 (3) ◽  
pp. 390-396 ◽  
Author(s):  
Kenneth Shapiro ◽  
Arno Fried

✓ The pressure-volume index (PVI) technique of bolus manipulation of cerebrospinal fluid (CSF) was used to measure neural axis volume buffering capacity and resistance to absorption of CSF (Ro) in 20 shunt-dependent hydrocephalic children acutely ill from shunt malfunction. All children had had ventricles that were near normal or subnormal in size when the shunts were functioning. The mean intracranial pressure (ICP, ± standard deviation (SD)) at the time of revision was 10.6 ± 6.4 mm Hg. The mean measured PVI (± standard error of the mean) was 18.4 ± 1.1 ml compared to the normal PVI of 17.5 ± 4.4 ml (± SD) predicted for these children. According to paired t-tests, these measured values were similar to those predicted on the basis of neural axis volume for each child, indicating that these children had normal neural axis volume buffering capacity. While the study was in progress, abrupt increases of ICP were documented in all children. These waves were observed spontaneously as well as in response to the addition of volume to the neural axis. In each child a specific threshold pressure along the pressure-volume curve corresponded to the appearance of unstable ICP. The threshold pressures at which this occurred corresponded to a mean neural axis compliance of 0.32 ± 0.07 ml/mm Hg (± SD). The Ro varied as a function of ICP. The Ro measured at ICP's below 15 mm Hg ranged from 2 to 7.5 mm Hg/ml/min and rose to 12 to 30 mm Hg/ml/min at pressures in the 20 to 25 mm Hg range. The results of this study indicate that neural axis volume buffering capacity is normal in shunt-dependent children who respond to shunting by reconstitution of the cortical mantle. This study indicates that the proximate cause of their abrupt clinical deterioration is unstable ICP, which occurred at a similar point on the pressure-volume curve of all children studied. The correlation of Ro to ICP suggests that CSF absorption does not increase in these children as ICP rises, resulting in movement along relatively normal pressure-volume curves. The functional implications of these parameters are discussed.


1985 ◽  
Vol 63 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Kenneth Shapiro ◽  
Arno Fried ◽  
Anthony Marmarou

✓ The pressure-volume index (PVI) technique of bolus manipulation of cerebrospinal fluid (CSF) was used to measure neural axis volume-buffering capacity and resistance to the absorption of CSF in 16 hydrocephalic infants prior to shunting. The mean steady-state intracranial pressure (ICP) was 11.7 ± 5.7 mm Hg (± standard deviation (SD)), representing a modest elevation of ICP in infants. The mean measured PVI was 28.1 ± 1.5 ml (± standard error of the mean (SEM)) compared to the predicted normal level for these infants of 12.1 ± 2.7 ml (± SD) (p < 0.001). This resulted from an enhanced volume storage capacity in the hydrocephalic infants. The PVI was not related to ventricular size in these hydrocephalic infants. Although absorption of the additional bolus of fluid did not occur at steady-state ICP, it was readily absorbed once ICP was raised above a mean threshold pressure of 16.0 ± 5.0 mm Hg (± SD) in 13 of the 16 infants. Above this pressure, the mean CSF absorption resistance was 7.2 ± 1.3 mm Hg/ml/min (± SEM) which is twice the normal values as measured by the bolus injection technique. The biomechanical profile of infantile hydrocephalus described in this study indicates that two factors are required for progression of ventricular volume. While an absorptive defect may initiate the hydrocephalic process, progressive volume storage requires an alteration in the mechanical properties of the intracranial compartment.


2004 ◽  
Vol 101 (4) ◽  
pp. 627-632 ◽  
Author(s):  
Matthew J. Mcgirt ◽  
Graeme Woodworth ◽  
George Thomas ◽  
Neil Miller ◽  
Michael Williams ◽  
...  

Object. Cerebrospinal fluid (CSF) shunts effectively reverse symptoms of pseudotumor cerebri postoperatively, but long-term outcome has not been investigated. Lumboperitoneal (LP) shunts are the mainstay of CSF shunts for pseudotumor cerebri; however, image-guided stereotaxy and neuroendoscopy now allow effective placement of a ventricular catheter without causing ventriculomegaly in these cases. To date it remains unknown if CSF shunts provide long-term relief from pseudotumor cerebri and whether a ventricular shunt is better than an LP shunt. The authors investigated these possibilities. Methods. The authors reviewed the records of all shunt placement procedures that were performed for intractable headache due to pseudotumor cerebri at one institution between 1973 and 2003. Using proportional hazards regression analysis, predictors of treatment failure (continued headache despite a properly functioning shunt) were assessed, and shunt revision and complication rates were compared between LP and ventricular (ventriculoperitoneal [VP] or ventriculoatrial [VAT]) shunts. Forty-two patients underwent 115 shunt placement procedures: 79 in which an LP shunt was used and 36 in which a VP or VAT shunt was used. Forty patients (95%) experienced a significant improvement in their headaches immediately after the shunt was inserted. Severe headache recurred despite a properly functioning shunt in eight (19%) and 20 (48%) patients by 12 and 36 months, respectively, after the initial shunt placement surgery. Seventeen patients without papilledema and 19 patients in whom preoperative symptoms had occurred for longer than 2 years experienced recurrent headache, making patients with papilledema or long-term symptoms fivefold (relative risk [RR] 5.2, 95% confidence interval [CI] 1.5–17.8; p < 0.01) or 2.5-fold (RR 2.51, 95% CI 1.01–9.39; p = 0.05) more likely to experience headache recurrence, respectively. In contrast to VP or VAT shunts, LP shunts were associated with a 2.5-fold increased risk of shunt revision (RR 2.5, 95% CI 1.5–4.3; p < 0.001) due to a threefold increased risk of shunt obstruction (RR 3, 95% CI 1.5–5.7; p < 0.005), but there were similar risks between the two types of shunts for overdrainage (RR 2.3, 95% CI 0.8–7.9; p = 0.22), distal catheter migration (RR 2.1, 95% CI 0.3–19.3; p = 0.55), and shunt infection (RR 1.3, 95% CI 0.3–13.2; p = 0.75). Conclusions. Based on their 30-year experience in the treatment of these patients, the authors found that CSF shunts were extremely effective in the acute treatment of pseudotumor cerebri—associated intractable headache, providing long-term relief in the majority of patients. Lack of papilledema and long-standing symptoms were risk factors for treatment failure. The use of ventricular shunts for pseudotumor cerebri was associated with a lower risk of shunt obstruction and revision than the use of LP shunts. Using ventricular shunts in patients with papilledema or symptoms lasting less than 2 years should be considered for those with pseudotumor cerebri—associated intractable headache.


1996 ◽  
Vol 85 (6) ◽  
pp. 1026-1035 ◽  
Author(s):  
Anthony Marmarou ◽  
Montasser A. Abd-Elfattah Foda ◽  
Kuniaki Bandoh ◽  
Masaaki Yoshihara ◽  
Takuji Yamamoto ◽  
...  

✓ Cerebrospinal fluid (CSF) dynamics were correlated to the changes in ventricular size during the first 3 months posttrauma in patients with severe head injury (Glasgow Coma Scale score ≤ 8, 75 patients) to distinguish between atrophy and hydrocephalus as the two possible causes of posttraumatic ventriculomegaly. Using the bolus injection technique, the baseline intracranial pressure (ICP), pressure volume index, and resistance for CSF absorption (R0) provided a threedimensional profile of CSF dynamics that was correlated with ventricular size and Glasgow Outcome Scale (GOS) score at 3, 6, and 12 months posttrauma. Patients were separated into five different groups based on changes in ventricular size, presence of atrophy, and CSF dynamics. Group 1 (normal group, 41.3%) demonstrated normal ventricular size and normal ICP. Group 2 (benign intracranial hypertension group, 14.7%) showed normal ventricular size and elevated ICP. Group × (atrophy group, 24%) displayed ventriculomegaly, normal ICP, and normal R0. Group 4 (normal-pressure hydrocephalus group, 9.3%) had ventriculomegaly, normal ICP, and high R0. Group 5 (high-pressure hydrocephalus group, 10.7%) showed ventriculomegaly and elevated ICP with or without high R0. The GOS score in the nonhydrocephalic groups (Groups 1, 2, and 3) was better than in the hydrocephalic groups (Groups 4 and 5). It is concluded from these results that 44% of head injury survivors may develop posttraumatic ventriculomegaly. Posttraumatic hydrocephalus, as identified by abnormal CSF dynamics, was diagnosed in 20% of survivors and their outcome was significantly worse. This study demonstrates the importance of using CSF dynamics as an aid in diagnosis of posttraumatic hydrocephalus and identifying those patients who may benefit from shunt placement.


1985 ◽  
Vol 63 (1) ◽  
pp. 82-87 ◽  
Author(s):  
Kenneth Shapiro ◽  
Futoshi Takei ◽  
Arno Fried ◽  
Ira Kohn

✓ In a craniectomy-durectomy model of kaolin-induced feline hydrocephalus, the pressure-volume index (PVI) technique of bolus manipulations of cerebrospinal fluid (CSF) was used to study the biomechanical changes associated with hydrocephalus. Steady-state intracranial pressure (ICP), PVI, and the resistance to the absorption of CSF were determined acutely and 3 to 5 weeks later in hydrocephalic cats and time-matched control cats. Steady-state ICP was 11.0 ± 2.1 mm Hg (± standard deviation) in the hydrocephalic cats, compared to 10.8 ± 2.2 mm Hg in the chronic control group (p > 0.1). The ICP in both the chronic hydrocephalic and chronic control groups was significantly higher (p < 0.001) than after acute durectomy (mean ICP 8.5 ± 1.2 mm Hg). Immediately after dural opening, the mean PVI was 3.6 ± 0.2 ml (± standard error of the mean); over time, it decreased to 1.3 ± 0.1 ml in the chronic control group (p < 0.001), but remained elevated in the hydrocephalic group at 3.5 ± 0.4 ml (p < 0.001). Resistance to CSF absorption was 9.1 ± 1.4 mm Hg/ml/min immediately after dural opening and increased to 28.8 ± 4.5 mm Hg/ml/min (p < 0.001) in the hydrocephalic cats; it increased even further in the chronic measurements in control cats, to 82.3 ± 9.2 mm Hg/ml/min (p < 0.001). Ventricular size was moderate to severely enlarged in all hydrocephalic cats, and normal in the control group. These results indicate that the biomechanical profile of the altered brain container model of kaolin-induced feline hydrocephalus resembles that described in hydrocephalic infants. As shown in the control subjects, an absorptive defect alone is not sufficient to cause progressive ventricular enlargement. Increased volume-buffering capacity coupled with a moderate increase of CSF absorption resistance facilitates volume storage in the ventricles.


1989 ◽  
Vol 71 (1) ◽  
pp. 59-62 ◽  
Author(s):  
Joseph T. J. Tans ◽  
Dick C. J. Poortvliet

✓ Resistance to outflow of cerebrospinal fluid (Rcsf) was determined by constant flow infusions and pressure-volume index (PVI) using bolus infusions in 114 patients with various types of hydrocephalus. A clear correlation was found between PVI and Rcsf and, to a lesser degree, between these two parameters and baseline pressure. The PVI was not related to patient's age, duration of disease, type of hydrocephalus, or ventricular size, indicating that the relationship between PVI and Rcsf was genuine and not caused by patient selection. It is concluded that, in adult hydrocephalus, compliance is not an independent parameter but chiefly determined by Rcsf.


1987 ◽  
Vol 66 (5) ◽  
pp. 734-740 ◽  
Author(s):  
Arno Fried ◽  
Kenneth Shapiro ◽  
Futoshi Takei ◽  
Ira Kohn

✓ This study was designed to determine whether implanting shunts in hydrocephalic cats produced the same biomechanical changes as have previously been found in children with shunts. Neuraxis volume-buffering capacity (pressure-volume index: PVI) and the resistance to the absorption of cerebrospinal fluid (CSF) were determined before and 3 weeks after placing shunts in 16 hydrocephalic cats. Intracranial pressure (ICP) was monitored for at least 6 hours after the shunts were occluded. The brains were perfused in vivo and removed to assess the size of the ventricles. The mean PVI of the hydrocephalic cats was 3.6 ± 0.2 ml (± standard error of the mean) before the shunts were placed. Three weeks after adequate shunt function was first established, the mean PVI decreased to 1.1 ± 0.1 ml and was similar to values determined in control animals. Prior to shunt placement, the resistance to the absorption of CSF was 28.4 ± 4.5 mm Hg/ml/min and did not vary with ICP. This parameter changed after shunting and increased as a function of ICP (r = 0.87, p < 0.001). At ICP's below 20 mm Hg, the resistance to the absorption of CSF was 65.0 ± 18.0 mm Hg/ml/min but increased to 220.0 ± 40.5 mm Hg/ml/min when determined at ICP's above 20 mm Hg. Corroborating evidence for this linkage of resistance to the absorption of CSF to ICP was found in the inexorable rise of ICP during the 6 hours of monitoring after the shunts were occluded. After shunt placement, the ventricles were normal in size in 12 cats and slightly enlarged in four. The biomechanical profile and pressure response to shunt occlusion in this laboratory model resembles that previously described in shunt-dependent children. As in humans, shunt placement in hydrocephalic cats results in normalization of the PVI and a linkage of the resistance to the absorption of CSF to ICP. The significance of these changes as they relate to shunt dependency is discussed.


1984 ◽  
Vol 60 (5) ◽  
pp. 1014-1021 ◽  
Author(s):  
Beverly C. Walters ◽  
Harold J. Hoffman ◽  
E. Bruce Hendrick ◽  
Robin P. Humphreys

✓ A retrospective study of the management of patients with infected cerebrospinal fluid (CSF) shunts was undertaken, covering the 20 years from 1960 to 1979, inclusive, and involving 222 patients with 267 infections. The data were analyzed with emphasis on influences surrounding treatment choice and subsequent outcome. Treatment was classified into three major categories: medical management (antibiotics alone), surgical management (antibiotics plus operative removal of the infected shunt), and no treatment (ranging from admission and observation only to shunt revision), the diagnosis of shunt infection having been missed. Results showed surgical treatment to be more efficacious than medical or no treatment, with a higher rate of initial cure, and lower morbidity and mortality rates. Also examined were the relationships among clinical presentation, infection rate, and results of specimens sent for culture, and initial treatment. The definitive nature of initial treatment was revealed to be directly proportional to the aggressiveness of microbiological investigation. This latter aspect was related to clinical presentation, with shunt malfunction being the least recognized symptom of shunt infection. Patients presenting with blocked shunts were less likely to receive therapy appropriate for infection than any other group, leading to the conclusion that shunt malfunction may be more specific to infection than heretofore believed.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 68-73 ◽  
Author(s):  
Pierre-Hugues Roche ◽  
Jean Régis ◽  
Henry Dufour ◽  
Henri-Dominique Fournier ◽  
Christine Delsanti ◽  
...  

Object. The authors sought to assess the functional tolerance and tumor control rate of cavernous sinus meningiomas treated by gamma knife radiosurgery (GKS). Methods. Between July 1992 and October 1998, 92 patients harboring benign cavernous sinus meningiomas underwent GKS. The present study is concerned with the first 80 consecutive patients (63 women and 17 men). Gamma knife radiosurgery was performed as an alternative to surgical removal in 50 cases and as an adjuvant to microsurgery in 30 cases. The mean patient age was 49 years (range 6–71 years). The mean tumor volume was 5.8 cm3 (range 0.9–18.6 cm3). On magnetic resonance (MR) imaging the tumor was confined in 66 cases and extensive in 14 cases. The mean prescription dose was 28 Gy (range 12–50 Gy), delivered with an average of eight isocenters (range two–18). The median peripheral isodose was 50% (range 30–70%). Patients were evaluated at 6 months, and at 1, 2, 3, 5, and 7 years after GKS. The median follow-up period was 30.5 months (range 12–79 months). Tumor stabilization after GKS was noted in 51 patients, tumor shrinkage in 25 patients, and enlargement in four patients requiring surgical removal in two cases. The 5-year actuarial progression-free survival was 92.8%. No new oculomotor deficit was observed. Among the 54 patients with oculomotor nerve deficits, 15 improved, eight recovered, and one worsened. Among the 13 patients with trigeminal neuralgia, one worsened (contemporary of tumor growing), five remained unchanged, four improved, and three recovered. In a patient with a remnant surrounding the optic nerve and preoperative low vision (3/10) the decision was to treat the lesion and deliberately sacrifice the residual visual acuity. Only one transient unexpected optic neuropathy has been observed. One case of delayed intracavernous carotid artery occlusion occurred 3 months after GKS, without permanent deficit. Another patient presented with partial complex seizures 18 months after GKS. All cases of tumor growth and neurological deficits observed after GKS occurred before the use of GammaPlan. Since the initiation of systematic use of stereotactic MR imaging and computer-assisted modern dose planning, no more side effects or cases of tumor growth have occurred. Conclusions. Gamma knife radiosurgery was found to be an effective low morbidity—related tool for the treatment of cavernous sinus meningioma. In a significant number of patients, oculomotor functional restoration was observed. The treatment appears to be an alternative to surgical removal of confined enclosed cavernous sinus meningioma and should be proposed as an adjuvant to surgery in case of extensive meningiomas.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 47-56 ◽  
Author(s):  
Wen-Yuh Chung ◽  
David Hung-Chi Pan ◽  
Cheng-Ying Shiau ◽  
Wan-Yuo Guo ◽  
Ling-Wei Wang

Object. The goal of this study was to elucidate the role of gamma knife radiosurgery (GKS) and adjuvant stereotactic procedures by assessing the outcome of 31 consecutive patients harboring craniopharyngiomas treated between March 1993 and December 1999. Methods. There were 31 consecutive patients with craniopharyngiomas: 18 were men and 13 were women. The mean age was 32 years (range 3–69 years). The mean tumor volume was 9 cm3 (range 0.3–28 cm3). The prescription dose to the tumor margin varied from 9.5 to 16 Gy. The visual pathways received 8 Gy or less. Three patients underwent stereotactic aspiration to decompress the cystic component before GKS. The tumor response was classified by percentage reduction of tumor volume as calculated based on magnetic resonance imaging studies. Clinical outcome was evaluated according to improvement and dependence on replacement therapy. An initial postoperative volume increase with enlargement of a cystic component was found in three patients. They were treated by adjuvant stereotactic aspiration and/or Ommaya reservoir implantation. Tumor control was achieved in 87% of patients and 84% had fair to excellent clinical outcome in an average follow-up period of 36 months. Treatment failure due to uncontrolled tumor progression was seen in four patients at 26, 33, 49, and 55 months, respectively, after GKS. Only one patient was found to have a mildly restricted visual field; no additional endocrinological impairment or neurological deterioration could be attributed to the treatment. There was no treatment-related mortality. Conclusions. Multimodality management of patients with craniopharyngiomas seemed to provide a better quality of patient survival and greater long-term tumor control. It is suggested that GKS accompanied by adjuvant stereotactic procedures should be used as an alternative in treating recurrent or residual craniopharyngiomas if further microsurgical excision cannot promise a cure.


Sign in / Sign up

Export Citation Format

Share Document