Evidence against leukotrienes as mediators of brain edema

1991 ◽  
Vol 74 (5) ◽  
pp. 773-780 ◽  
Author(s):  
Andreas Unterberg ◽  
Walter Schmidt ◽  
Michael Wahl ◽  
Earl F. Ellis ◽  
Anthony Marmarou ◽  
...  

✓ Leukotrienes are powerful metabolites of arachidonic acid which are known to increase the permeability of peripheral blood vessels. These substances are found in brain tissue in association with cerebral ischemia, and in brain tumors. Therefore, it has been proposed that leukotrienes have a mediator function in brain edema. This hypothesis was subjected to further experimental analysis in this study, in which the authors investigated whether: 1) superfusion of the exposed brain surface with leukotrienes increases the permeability of extraparenchymal blood vessels in vivo; 2) intraparenchymal infusion of leukotrienes induces brain edema; and 3) pharmacological inhibition of leukotriene formation by BW755C, an inhibitor of leukotriene synthesis, reduces formation of brain edema from a standardized traumatic insult. The pial vessels of the parietal cortex of cats were examined by fluorescence microscopy during cerebral superfusion with the leukotrienes C4 (LTC4), D4 (LTD4), or E4 (LTE4) by using an open cranial window preparation. Intravenous Na+-fluorescein served as an in vivo blood-brain barrier (BBB) indicator. Superfusion of the pia with leukotrienes (up to 2 µM) did not open the barrier to fluorescein, but was associated with a significant constriction (up to 25%) of arterial and venous vessels. In experiments with slow infusion of leukotriene B4 (LTB4) or LTC4 into the white matter of feline brain, the tissue water content was subsequently determined in serial brain slices using the specific gravity method. Tissue water profiles obtained after a 15- µM infusion of either LTB4 or LTC4 were virtually identical with those of control animals infused with mock cerebrospinal fluid. Thus, neither LTB4 nor LTC4 led to an augmentation of infusion-induced brain edema. In a final series, a cold lesion of the left parietal cortex was induced in rabbits. Twenty-four hours later, swelling of the exposed hemisphere was quantified by gravimetrical comparison of its weight with that of the contralateral nontraumatized hemisphere. Eight animals received BW755C intravenously prior to and after trauma to inhibit formation of leukotrienes. Seven rabbits were infused with an equivalent volume of saline as a control study. The resulting hemispheric swelling was 7.7% ± 0.6% (mean ± standard error of the mean) 24 hours later in animals receiving BW755C and 7.8% ± 1.2% in the control group, indicating that inhibition of leukotrienes was ineffective in preventing formation of vasogenic brain edema. The findings demonstrate that leukotrienes administered to the brain in concentrations occurring under pathological conditions do not open the BBB nor do they induce brain edema. Moreover, formation of brain edema from a standard insult was not therapeutically influenced by inhibition of leukotriene synthesis. Thus, the current findings taken together do not support a role of leukotrienes as mediators in brain edema.

2002 ◽  
Vol 97 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Sophie de Boüard ◽  
Christo Christov ◽  
Jean-Sébastien Guillamo ◽  
Lina Kassar-Duchossoy ◽  
Stéphane Palfi ◽  
...  

Object. The reliable assessment of the invasiveness of gliomas in vitro has proved elusive, because most invasion assays inadequately model in vivo invasion in its complexity. Recently, organotypical brain cultures were successfully used in short-term invasion studies on glioma cell lines. In this paper the authors report that the invasiveness of human glioma biopsy specimens directly implanted into rodent brain slices by using the intraslice implantation system (ISIS) can be quantified with precision. The model was first validated by the demonstration that, in long-term studies, established glioma cells survive in the ISIS and follow pathways of invasion similar to those in vivo. Methods. Brain slices (400 µm thick) from newborn mice were maintained on millicell membranes for 15 days. Cells from two human and one rodent glioblastoma multiforme (GBM) cell lines injected into the ISIS were detected by immunohistochemistry or after transfection with green fluorescent protein—containing vectors. Preferential migration along blood vessels was identified using confocal and fluorescent microscopy. Freshly isolated (≤ 24 hours after removal) 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate—prelabeled human glioma biopsy specimens were successfully implanted in 19 (83%) of 23 cases, including 12 GBMs and seven lower grade gliomas (LGGs). Morphometric quantification of distance and density of tumor cell invasion showed that the GBMs were two to four times more invasive than the LGGs. Heterogeneity of invasion was also observed among GBMs and LGGs. Directly implanted glioma fragments were more invasive than spheroids derived from the same biopsy specimen. Conclusions. The ISIS combines a high success rate, technical simplicity, and detailed quantitative measurements and may, therefore, be used to study the invasiveness of biopsy specimens of gliomas of different grades.


2000 ◽  
Vol 93 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Anthony Marmarou ◽  
Panos P. Fatouros ◽  
Pal Barzó ◽  
Gennarina Portella ◽  
Masaaki Yoshihara ◽  
...  

Object. The pathogenesis of traumatic brain swelling remains unclear. The generally held view is that brain swelling is caused primarily by vascular engorgement and that edema plays a relatively minor role in the swelling process. The goal of this study was to examine the roles of cerebral blood volume (CBV) and edema in traumatic brain swelling.Methods. Both brain-tissue water and CBV were measured in 76 head-injured patients, and the relative contribution of edema and blood to total brain swelling was determined. Comparable measures of brain-tissue water were obtained in 30 healthy volunteers and CBV in seven volunteers. Brain edema was measured using magnetic resonance imaging, implementing a new technique for accurate measurement of total tissue water. Measurements of CBV in a subgroup of 31 head-injured patients were based on consecutive measures of cerebral blood flow (CBF) obtained using stable xenon and calculation of mean transit time by dynamic computerized tomography scanning after a rapid bolus injection of iodinated contrast material. The mean (± standard deviation) percentage of swelling due to water was 9.37 ± 8.7%, whereas that due to blood was −0.8 ± 1.32%.Conclusions. The results of this study showed that brain edema is the major fluid component contributing to traumatic brain swelling. Moreover, CBV is reduced in proportion to CBF reduction following severe brain injury.


1998 ◽  
Vol 88 (2) ◽  
pp. 298-303 ◽  
Author(s):  
Laura L. Horky ◽  
Ryszard M. Pluta ◽  
Robert J. Boock ◽  
Edward H. Oldfield

Object. Oxyhemoglobin (HbO2) causes vasospasm after subarachnoid hemorrhage (SAH). The most likely spasmogenic component of HbO2 is iron. Various iron chelators, such as deferoxamine, have prevented vasospasm in vivo with limited success. However, only chelators of iron in the ferric state have been studied in animal models of vasospasm after SAH. Because free radical formation requires the ferrous (Fe++) moiety and Fe++ is a potent binder of the vasodilator nitric oxide, the authors hypothesized that iron in the ferrous state causes vasospasm and that chelators of Fe++, such as 2,2′-dipyridyl, may prevent vasospasm. This study was undertaken to investigate the influence of 2,2′-dipyridyl on vasospasm after induction of SAH in a primate model. Methods. Twelve cynomolgus monkeys were randomly divided into two groups and then both groups underwent placement of an arterial autologous blood clot in the subarachnoid space around the right middle cerebral artery (MCA). The five animals in the control group received intravenously administered saline and the seven treated animals received intravenously administered chelator (2,2′-dipyridyl) for 14 days. Sequential arteriography for assessment of MCA diameter was performed before and on the 7th day after SAH. Conclusions. Prevention of cerebral vasospasm by means of treatment with continuous intravenous administration of 2,2′-dipyridyl is reported in a primate model of SAH. This result provides insight into the possible mechanism of delayed vasospasm after aneurysmal SAH and provides a potential preventive therapy for it.


1978 ◽  
Vol 49 (4) ◽  
pp. 530-537 ◽  
Author(s):  
Anthony Marmarou ◽  
Werner Poll ◽  
Kenneth Shulman ◽  
Hemmige Bhagavan

✓ A simple method was developed for the laboratory preparation of gradient columns of specific gravity used in measurement of brain-tissue water. By this automated technique, virtually linear and repeatable density gradients were obtained from which values of tissue specific gravity could be determined. The specific gravity of both solid and fresh cortex and white matter from adult cats was measured and converted to units of percent water per gram tissue using conversion factors derived for this purpose and applicable to studies of brain edema.


2004 ◽  
Vol 100 (3) ◽  
pp. 498-504 ◽  
Author(s):  
Joachim Oertel ◽  
Michael Robert Gaab ◽  
Dirk-Thomas Pillich ◽  
Henry W. S. Schroeder ◽  
Rolf Warzok ◽  
...  

Object. The waterjet method of dissection has been shown to enable the precise dissection of the parenchyma vessels while preserving blood in cadaveric pig brains. The waterjet device has also been applied clinically to treat various diseases and disorders without complications. Evidence still remains to be gathered as to how the instrument performs in reducing surgical trauma, intraoperative blood loss, and postsurgical brain edema. In the present study the authors investigate these parameters in a comparison between waterjet dissection and ultrasonic aspiration in the rabbit brain in vivo. Methods. Thirty-one rabbits received identical bilateral frontal corticotomies, which were created using the waterjet device or an ultrasonic aspirator. The animals were killed 1, 3, or 7 days, or 6 weeks after surgery and their brains were processed for immunohistological analysis. Blood vessel preservation, intraoperative hemorrhage, postsurgical brain edema, and posttraumatic microglial and astoglial reactions were evaluated. Only in animals subjected to waterjet dissection were preserved vessels observed within the corticotomies. In addition, less intraoperative bleeding occurred in animals in which the waterjet was used. The microglial reaction was significantly reduced by waterjet dissection compared with ultrasonic aspiration; however, no difference in edema formation or astrocytic reactivity was observed. Conclusions. These results demonstrate that waterjet dissection appears to be less traumatic than ultrasonic aspiration with respect to intraoperative hemorrhage and postoperative microglial reactivity in the rabbit model. Nevertheless, no difference in edema formation could be demonstrated. It remains to be proven that the observed differences are of clinical relevance.


1997 ◽  
Vol 86 (6) ◽  
pp. 998-1006 ◽  
Author(s):  
Paul D. Sawin ◽  
Vincent C. Traynelis ◽  
Gretchen Rich ◽  
Bruce A. Smith ◽  
Timothy J. Maves ◽  
...  

✓ The mechanism of action underlying chymopapain (Chymodiactin) chemonucleolysis remains obscure. Radiographic studies suggest that chymopapain does not alter disc fragment size acutely; nonetheless, patients often report symptom resolution within a few days, even hours, of treatment. The authors postulate that, in addition to its chemonucleolytic action, chymopapain may possess antiinflammatory properties. To test this hypothesis, the authors assessed the ability of chymopapain to modulate the activity of the proinflammatory enzyme phospholipase A2 (PLA2) and to ameliorate behavioral changes associated with inflammatory neuropathy in an in vivo model of sciatica. Thirty-nine male Fischer rats were randomly assigned to one of three treatment groups: 1) saline, 2) betamethasone, or 3) chymopapain. All of the rats underwent unilateral sciatic nerve ligation with loose chromic gut suture to induce inflammatory mononeuropathy. The animals were tested for thermal and mechanical hyperalgesia on Days 0 (preoperation), 7 (pretreatment), and 14 (prior to death). Three animals were killed on Day 0 to determine the baseline PLA2 activity within unmanipulated rat sciatic nerves. On Day 7, three animals from each group were killed to assess PLA2 activity prior to treatment. The remainder were given a single infusion of saline, betamethasone (0.3 mg/kg), or chymopapain (100 pKat U) around the inflamed nerve. On Day 14, the remaining animals were killed and their sciatic nerves were removed. The tissue was homogenized and the PLA2 activity was determined using [14C]arachidonate—labeled Escherichia coli phospholipid membrane as a substrate. Lipids were extracted and separated by thin-layer chromatography. All animals developed behavioral changes consistent with inflammatory mononeuropathy 24 to 72 hours postoperatively; these included gait disturbance, flexion deformity, and hyperalgesia of the involved hindlimb. The degree of mechanical and thermal hyperalgesia was comparable between groups at Day 7. By Day 14, the thermal hyperalgesia had resolved; the mechanical hyperalgesia was less evident in the betamethasone- and chymopapain-treated groups than in the saline-treated controls (p = 0.003; saline- vs. chymopapain-treated groups p = 0.004; saline- vs. betamethasone-treated groups p = 0.008). The mean PLA2 activity at baseline (Day 0) was 11.6 ± 4.9 nmol phospholipid hydrolyzed per minute per milligram of protein. The PLA2 activity at Day 7 was 74.4 ± 18.2 (ligated side) and 21.2 ± 11.7 (nonligated side). At Day 14, PLA2 activity was reduced in the chymopapain- (47.8 ± 12.3) and betamethasone- (39.7 ± 9.5) treated groups compared with the saline control group (62.3 ± 11.2), (saline- vs. chymopapain-treated groups p < 0.05; saline- vs. betamethasone-treated groups p < 0.01). The PLA2 activity in nonligated specimens was 18.6 ± 10.1. These data indicate that chymopapain exhibits antiinflammatory properties in vivo, reducing PLA2 activity and ameliorating mechanical hyperalgesia in this model of inflammatory sciatic neuropathy.


1999 ◽  
Vol 90 (3) ◽  
pp. 499-503 ◽  
Author(s):  
Toshihiko Kuroiwa ◽  
Tsukasa Nagaoka ◽  
Masato Ueki ◽  
Ichiro Yamada ◽  
Naoyuki Miyasaka ◽  
...  

Object. The authors examined the correlation between changes in the apparent diffusion coefficient, regional water content, and tissue ultrastructure after vasogenic brain edema.Methods. Vasogenic edema was induced in the white matter of six cats by cortical cold lesioning. The trace of diffusion tensor (Trace[D]) obtained from magnetic resonance imaging to measure the orientationally averaged water diffusibility was compared with the corresponding tissue water content determined by gravimetric studies and with ultrastructural water localization. Edema fluid had spread to the subcortical and deep white matter by 4.5 hours postlesioning. The increase in Trace(D) showed a significant linear correlation with the increase in tissue water content, both in the subcortical and deep white matter as follows: y = 45.5x − 2367 (r = 0.94) and y = 37.0x − 1769 (r = 0.93), respectively, where x is the water content (gram water/gram tissue) and y the Trace(D) (× 10−6 mm2/second). On histological examination, nerve fibers were found to be dissociated in the white matter and the extracellular space was markedly enlarged with protein-rich fluid. No noticeable hydropic swelling of the cellular components was observed.Conclusions. A linear correlation was observed between increases in Trace(D) and increases in extracellular water volume in in vivo vasogenic brain edema. A similar correlation between the subcortical and deep white matter showing different arrangements of nerve fibers (parallel compared with intermingled, respectively) indicated that measurement of Trace(D) is a suitable parameter for the evaluation of vasogenic brain edema.


1998 ◽  
Vol 88 (3) ◽  
pp. 557-561 ◽  
Author(s):  
Ryszard M. Pluta ◽  
John K. B. Afshar ◽  
Robert J. Boock ◽  
Edward H. Oldfield

Hemoglobin released from hemolysed erythrocytes has been postulated to be responsible for delayed cerebral vasospasm after subarachnoid hemorrhage (SAH). However, the evidence is indirect and the mechanisms of action are unclear. Cerebrovascular tone is regulated by a dynamic balance of relaxing and contracting factors. Loss of the endothelium-derived relaxing factor—nitric oxide in the presence of oxyhemoglobin and overproduction of endothelin-1 stimulated by oxyhemoglobin have been postulated as causes of delayed cerebral vasospasm after SAH. Object. The authors aimed to investigate this hypothesis using in vivo microdialysis to examine time-dependent changes in the perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin in a primate model of SAH. Methods. Nine cynomolgus monkeys underwent right-sided frontotemporal craniectomy and placement of a semipermeable microdialysis catheter adjacent to the right middle cerebral artery (MCA). Saline (control group, three animals) or an arterial blood clot (SAH group, six animals) was then placed around the MCA and the catheter. Arteriographically confirmed vasospasm had developed in all animals with SAH but in none of the control animals on Day 7. The dialysate was collected daily for 12 days. Levels of oxyhemoglobin, deoxyhemoglobin, and methemoglobin were measured by means of spectrophotometry. Perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin peaked on Day 2 in the control monkeys and could not be detected on Days 5 to 12. Perivascular concentrations of oxyhemoglobin and deoxyhemoglobin peaked on Day 7 in the SAH group, at which time the concentrations in the dialysate were 100-fold higher than in any sample obtained from the control animals. Methemoglobin levels increased only slightly, peaking between Days 7 and 12, at which time the concentration in the dialysate was 10-fold higher than in samples from the control animals. Conclusions. This study provides in vivo evidence that the concentrations of oxyhemoglobin and deoxyhemoglobin increase in the cerebral subarachnoid perivascular space during the development of delayed cerebral vasospasm. The results support the hypothesis that oxyhemoglobin is involved in the pathogenesis of delayed cerebral vasospasm after SAH and implicate deoxyhemoglobin as a possible vasospastic agent.


1973 ◽  
Vol 38 (6) ◽  
pp. 739-742 ◽  
Author(s):  
Barry A. Siegel ◽  
Rebecca K. Studer ◽  
E. James Potchen

✓ The authors report that brain edema following cerebral microembolism in rats is accompanied by significant increases in brain sodium and cerebral 22Na uptake. Their results suggest that in vivo measurement of brain 22Na uptake may be useful for the detection of cerebral edema.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yohei Tsukada ◽  
Fumitaka Muramatsu ◽  
Yumiko Hayashi ◽  
Chiaki Inagaki ◽  
Hang Su ◽  
...  

AbstractAngiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.


Sign in / Sign up

Export Citation Format

Share Document