Increased locoregional blood flow in brain tumors after cervical spinal cord stimulation

2003 ◽  
Vol 98 (6) ◽  
pp. 1263-1270 ◽  
Author(s):  
Bernardino Clavo ◽  
Francisco Robaina ◽  
Luis Catalá ◽  
Benilde Valcárcel ◽  
Jesús Morera ◽  
...  

Object. Patients with high-grade gliomas have poor prognoses following standard treatment. Generally, malignant brain tumors have a decreased blood flow that results in increased resistance to radiation and reduced delivery of chemotherapeutic agents and oxygen. The aim of the present study was to assess the effect of spinal cord stimulation (SCS) on locoregional blood flow in high-grade tumors in the brain. Methods. Fifteen patients (11 with Grade III and four with Grade IV brain tumors) had SCS devices inserted prior to scheduled radiotherapy. Both before and after SCS, the patients underwent the following procedures: 1) single-photon emission computerized tomography (SPECT) scanning; 2) middle cerebral artery (MCA) blood flow velocity measurements (centimeters/second) with the aid of transcranial Doppler (TCD) ultrasonography; and 3) common carotid artery (CCA) blood flow volume quantification (milliliters/minute) based on time-domain processing by using color Doppler ultrasonography. The indices demonstrated on SPECT scanning before SCS were significantly lower (p < 0.001) in tumor sites compared with those in peritumoral sites (32%) and healthy contralateral areas (41%). Poststimulation results revealed the following: 1) a mean increase of 15% in tumor blood flow in 75% of patients (p = 0.033), as demonstrated on SPECT scanning; 2) a mean increase of greater than 18% in systolic and diastolic blood flow velocities in both tumorous and healthy MCAs in all but one patient (p < 0.002), as exhibited on TCD ultrasonography; and 3) a mean increase of greater than 60% in blood flow volume in tumorous and healthy CCAs in all patients (p < 0.013), as revealed on color Doppler ultrasonography studies. Conclusions. Preliminary data show that SCS can modify locoregional blood flow in high-grade malignant tumors in the brain, thus indicating that SCS could be used to improve blood flow, oxygenation, and drug delivery to such tumors and could be a useful adjuvant in chemoradiotherapy.

1999 ◽  
Vol 90 (3) ◽  
pp. 463-467 ◽  
Author(s):  
Jiann-Shing Jeng ◽  
Ping-Keung Yip ◽  
Sheng-Jean Huang ◽  
Ming-Chien Kao

Object. The purpose of this study was to analyze the change in carotid and middle cerebral artery (MCA) hemodynamics before and after endoscopic upper thoracic sympathectomy in patients with palmar hyperhidrosis (PH).Methods. Sixty-eight patients with PH (35 males and 33 females) for whom the average age was 24.5 ± 10.7 years (± standard deviation) were recruited into this study. These patients all underwent routine upper T-2 sympathectomy to treat their PH. Ultrasonography studies of the carotid arteries (CAs) and MCA were obtained in each patient before and after T-2 sympathectomy. The blood flow volume, flow velocity, and resistivity index (RI) in the bilateral common CAs (CCAs), internal CAs (ICAs), and external CAs (ECAs) were evaluated using duplex ultrasonography. The systolic peak velocity, mean velocity, diastolic peak velocity, pulsatility index, and RI of the bilateral MCAs were evaluated using transcranial Doppler ultrasonography. Blood pressure and heart rate were also recorded during this study. The Student paired t-test was used to analyze the differences between studies before and after bilateral T-2 sympathectomy. There was a significant reduction in diastolic pressure after T-2 sympathectomy (p = 0.003), but not in systolic pressure or heart rate. The vessel diameter was increased after sympathectomy in the left CAs and right CCA. The T-2 sympathectomy led to significant elevation of blood flow volume and RI in the left CCA, ICA, and ECA (p < 0.05). The authors found significant increases in maximum flow velocity and RI in the left MCA (p < 0.05).Conclusions. Patients who underwent T-2 sympathectomy demonstrated a significant increase in blood flow volume and flow velocities of the CAs and MCA, especially on the left side. Asymmetry of sympathetic influence on the hemodynamics of the CAs and MCA was noted. The usefulness of sympathectomy for the treatment of ischemic cardiovascular and cerebrovascular disease deserves further investigation.


1993 ◽  
Vol 79 (5) ◽  
pp. 729-735 ◽  
Author(s):  
David Barba ◽  
Joseph Hardin ◽  
Jasodhara Ray ◽  
Fred H. Gage

✓ Gene therapy has many potential applications in central nervous system (CNS) disorders, including the selective killing of tumor cells in the brain. A rat brain tumor model was used to test the herpes simplex virus (HSV)-thymidine kinase (TK) gene for its ability to selectively kill C6 and 9L tumor cells in the brain following systemic administration of the nucleoside analog ganciclovir. The HSV-TK gene was introduced in vitro into tumor cells (C6-TK and 9L-TK), then these modified tumor cells were evaluated for their sensitivity to cell killing by ganciclovir. In a dose-response assay, both C6-TK and 9L-TK cells were 100 times more sensitive to killing by ganciclovir (median lethal dose: C6-TK, 0.1 µg ganciclovir/ml; C6, 5.0 µg ganciclovir/ml) than unmodified wild-type tumor cells or cultured fibroblasts. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to kill established brain tumors in rats as quantified by both stereological assessment of brain tumor volumes and studies of animal survival over 90 days. Rats with brain tumors established by intracerebral injection of wild-type or HSV-TK modified tumor cells or by a combination of wild-type and HSV-TK-modified cells were studied with and without ganciclovir treatments. Stereological methods determined that ganciclovir treatment eliminated tumors composed of HSV-TK-modified cells while control tumors grew as expected (p < 0.001). In survival studies, all 10 rats with 9L-TK tumors treated with ganciclovir survived 90 days while all untreated rats died within 25 days. Curiously, tumors composed of combinations of 9L and 9L-TK cells could be eliminated by ganciclovir treatments even when only one-half of the tumor cells carried the HSV-TK gene. While not completely understood, this additional tumor cell killing appears to be both tumor selective and local in nature. It is concluded that HSV-TK gene therapy with ganciclovir treatment does selectively kill tumor cells in the brain and has many potential applications in CNS disorders, including the treatment of cancer.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


1983 ◽  
Vol 58 (6) ◽  
pp. 863-873 ◽  
Author(s):  
Ronald G. Blasberg ◽  
Peter Molnar ◽  
Marc Horowitz ◽  
Paul Kornblith ◽  
Roger Pleasants ◽  
...  

✓ Regional blood flow (BF) was measured in RT-9 experimental brain tumors using carbon-14 labeled iodoantipyrine, the Kety tissue-exchange equations, and quantitative autoradiographic techniques. Blood flow was variable within tumor tissue, and the range of BF increased with increasing tumor size; the overall range was 6 to 138 ml/100 gm/min and the maximum range within an individual tumor was 55 ml/100 gm/min. In all but one case, mean tumor BF was less than that in the same anatomic region of the contralateral hemisphere (CBA). The magnitude of BF within individual tumor foci generally could be related to tumor size, location (intraparenchymal versus extraparenchymal), and the presence of necrosis or cysts; it was lower in the geometric centers than in the periphery of medium-sized and large tumors. Brain adjacent to tumor had higher BF's than the tumor periphery; generally, the BF in the brain adjacent to the tumor was less than that in the CBA. A global depression of BF was observed within tumor-free cortex and corpus callosum of the hemisphere ipsilateral to tumor implantation and primary growth, suggesting a hemispheric reduction in metabolic and functional activity.


2001 ◽  
Vol 95 (6) ◽  
pp. 1012-1019 ◽  
Author(s):  
Martin A. Proescholdt ◽  
Marsha J. Merrill ◽  
Barbara Ikejiri ◽  
Stuart Walbridge ◽  
Aytac Akbasak ◽  
...  

Object. Immunotherapy for glioblastoma has been uniformly ineffective. The immunological environment of the brain, with its low expression of major histocompatibility complex (MHC) molecules and limited access for inflammatory cells and humoral immune effectors due to the blood—brain barrier (BBB), may contribute to the failure of immunotherapy. The authors hypothesize that brain tumors are protected from immune surveillance by an intact BBB at early stages of development. To investigate the immunological characteristics of early tumor growth, the authors compared the host response to a glioma implanted into the brain and into subcutaneous tissue. Methods. Samples of tumors growing in the brain or subcutaneously in rats were obtained for 7 consecutive days and were examined immunohistochemically for MHC Class I & II molecules, and for CD4 and CD8 lymphocyte markers. Additionally, B7-1 costimulatory molecule expression and lymphocyte-specific apoptosis were examined. Conclusions. On Days 3 and 4 after implantation, brain tumors displayed significantly lower MHC Class II expression and lymphocytic infiltration (p < 0.05). After Day 5, however, no differences were detected. The MHC Class II expressing cells within the brain tumors appeared to be infiltrating microglia. Minimal B7-1 expression combined with lymphocyte-specific apoptosis were detected in both brain and subcutaneous tumors. Low MHC Class II expression and low lymphocytic infiltration at early time points indicate the importance of the immunologically privileged status of the brain during early tumor growth. These characteristics disappeared at later time points, possibly because the increasing perturbation of the BBB alters the specific immunological environment of the brain. The lack of B7-1 expression combined with lymphocyte apoptosis indicates clonal anergy of glioma-infiltrating lymphocytes regardless of implantation site.


1992 ◽  
Vol 76 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Stephen C. Saris ◽  
Paul Spiess ◽  
Daniel M. Lieberman ◽  
Shan Lin ◽  
Stuart Walbridge ◽  
...  

✓ Methods have recently been described for the isolation and expansion of lymphocytes that have trafficked into animal and human tumors. These CD8-positive tumor-infiltrating lymphocytes (TIL's) have exceptional trafficking ability to, and efficacy against, tumor targets in extracranial sites. Prior to Phase I clinical trials for patients with gliomas, adoptive immunotherapy with TIL's was studied in a mouse model of primary brain tumors to determine if intracerebral tumors have a similar response. Glioma 261 (GL261) tumors were grown in the subcutaneous space of C57BL/6 mice. After enzymatic digestion, the cells were incubated in vitro with interleukin-2 (IL-2) until a confluent population of T lymphocytes was present. The in vitro efficacy of these TIL's was tested against fresh GL261 targets with a chromium release assay; the in vivo efficacy was tested against GL261 tumors in the liver and against irradiated and nonirradiated GL261 tumors in the brain. Mice received one of the following: intraperitoneal saline; intraperitoneal IL-2 (7500 to 50,000 U three times daily for 5 days); IL-2 plus intravenous TIL's (1 to 3 × 107 cells); 10 Gy cranial irradiation; irradiation plus IL-2; or irradiation plus IL-2 plus TIL's. The TIL preparation killed 77% of tumor targets in 4 hours at an effector:target ratio of 100:1. In animals with GL261 tumors in the liver, at 2 weeks there were 93 ± 37, 128 ± 45, and 21 ± 14 liver metastases in the control, IL-2, and IL-2 plus TIL groups, respectively. However, in animals with GL261 tumors in the brain, no treatment group had an increased survival rate compared to the control group. It is concluded that, although TIL and IL-2 immunotherapy can be used effectively to treat brain tumors in vitro and at sites outside the central nervous system, it is ineffective against the same type of tumor in the brain. Different methods of delivery or different combinations of these immunomodulators may be more effective; however, based on these findings, treatment of patients with IL-2 and TIL cannot be recommended until efficacy has been demonstrated in an animal model.


2002 ◽  
Vol 96 (5) ◽  
pp. 918-923 ◽  
Author(s):  
Joseph C. Watson ◽  
Alexander M. Gorbach ◽  
Ryszard M. Pluta ◽  
Ramin Rak ◽  
John D. Heiss ◽  
...  

Object. Application of sensitive infrared imaging is ideally suited to observe blood vessels and blood flow in exposed organs, including the brain. Temporary vascular occlusion is an important part of neurosurgery, but the capacity to monitor the effects of these occlusions in real time is limited. In surgical procedures that require vascular manipulation, such as those involving aneurysms, arteriovenous malformations (AVMs), or tumors, the ability to visualize blood flow in vessels and their distribution beds would be beneficial. The authors recount their experience in the use of a sensitive (0.02°C), high-resolution (up to 50 µm/pixel) infrared camera with a rapid shutter speed (up to 2 msec/frame) for localizing cortical function intraoperatively. They observed high-resolution images of cerebral arteries and veins. The authors hypothesized that infrared imaging of cerebral arteries, performed using a sensitive, high-resolution camera during surgery, would permit changes in arterial flow to be be seen immediately, thus providing real-time assessment of brain perfusion in the involved vascular territory. Methods. Cynomolgus monkeys underwent extensive craniectomies, exposing the frontal, parietal, and temporal lobes. Temporary occlusions of the internal carotid artery and middle cerebral artery branches (30 events) were performed serially and were visualized with the aid of an infrared camera. Arteries and veins of the monkey brain were clearly visualized due to cooling of the exposed brain, which contrasted with blood within the vessels that remained at core temperature. Blood flow changes in vessels were seen immediately (< 1 second) in real time during occlusion and reopening of the vessels, regardless of the duration of the occlusion. Areas of decreased cortical blood flow rapidly cooled (−0.3 to 1.3°C) and reheated in response to reperfusion. Rewarming occurred faster in arteries than in the cortex (for a 20-minute occlusion, the change in temperature per second was 2 × 10−2°C in the artery and 7 × 10−3°C in the brain). Collateral flow could be evaluated by intraoperative observations and data processing. Conclusions. Use of high-resolution, digital infrared imaging permits real-time visualization of arterial flow. It has the potential to provide the surgeon with a means to assess collateral flow during temporary vessel occlusion and to visualize directly the flow in parent arteries or persistent filling of an aneurysm after clipping. During surgery for AVMs, the technique may provide a new way to assess arterial inflow, venous outflow, results of embolization, collateral flow, steal, and normal perfusion pressure breakthrough.


1983 ◽  
Vol 58 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Neal F. Kassell ◽  
David J. Boarini ◽  
Julie J. Olin ◽  
James A. Sprowell

✓ In six dogs anesthetized with halothane and nitrous oxide, mean arterial pressure (MAP) was lowered to 40 mm Hg for an average of 90 minutes by intravenous infusion of adenosine. The hypotensive effect of the adenosine was potentiated by administering dipyridamole to block its intravascular inactivation. Blood flow to the brain, spinal cord, heart, kidneys, and skeletal muscle was measured six times in each animal using the radioactive microsphere technique. Determinations were made before, during, and 30 minutes after the hypotensive period. During the hypotensive period, MAP was decreased 61% and was related to a proportional decrease in peripheral vascular resistance. Cardiac index decreased 14%. Total cerebral blood flow (CBF) decreased an average of 28% and cerebral vascular resistance decreased 53%. The reduction in CBF was heterogeneous; the cerebral cortex and corpus callosum were most affected and the brain stem least affected. No change occurred in the cerebral metabolic rate of oxygen usage (CMRO2). Left ventricle flow increased 147% and right ventricle flow increased 271%. Blood flow to the kidneys decreased 70%, and to the liver decreased to 6% of control. Jejunum blood flow increased 138% during recovery, while stomach flow varied but showed no statistical change. There was no tachyphylaxis, rebound hypertension, or toxicity associated with the adenosine-induced hypotension. These properties suggest that adenosine may be a useful agent for inducing arterial hypotension in neurosurgical patients.


1974 ◽  
Vol 40 (6) ◽  
pp. 706-716 ◽  
Author(s):  
Yukitaka Ushio ◽  
Toru Hayakawa ◽  
Heitaro Mogami

✓ Malignant gliomas were induced in strain ddN mice by intracerebral implantation of a 20-methylcholanthrene pellet. The uptake and distribution of tritiated methotrexate (MTX-3H) in the tumor were investigated by radioactive assay and radioautography after single intravenous or intrathecal injections. By either route, a large amount of MTX-3H was taken up by gliomas, and a significantly higher concentration was observed in tumor than in the brain tissue. At 24 hours after intrathecal administration, the uptake of MTX-3H by gliomas exceeded that achieved after intravenous injection, although the drug dosage in the latter was 10 times that in the former.


Sign in / Sign up

Export Citation Format

Share Document