Three-dimensional constructive interference in steady-state magnetic resonance imaging in syringomyelia: advantages over conventional imaging

2008 ◽  
Vol 8 (5) ◽  
pp. 429-435 ◽  
Author(s):  
Florian Roser ◽  
Florian H. Ebner ◽  
Søren Danz ◽  
Felix Riether ◽  
Rainer Ritz ◽  
...  

Object Neuroradiology has become indispensable in detecting the pathophysiology in syringomyelia. Constructive interference in steady-state (CISS) magnetic resonance (MR) imaging can provide superior contrast at the sub-arachnoid tissue borders. As this region is critical in preoperative evaluation, the authors hypothesized that CISS imaging would provide superior assessment of syrinx pathology and surgical planning. Methods Based on records collected from a database of 130 patients with syringomyelia treated at the authors' institution, 59 patients were prospectively evaluated with complete neuroradiological examinations. In addition to routine acquisitions with FLAIR, T1- and T2-weighted, and contrast-enhanced MR imaging series, the authors obtained sagittal cardiac-gated sequences to visualize cerebrospinal fluid (CSF) pulsations and axial 3D CISS MR sequences to detect focal arachnoid webs. Statistical qualitative and quantitative evaluations of spinal cord/CSF contrast, spinal cord/CSF delineation, motion artifacts, and artifacts induced by pulsatile CSF flow were performed. Results The 3D CISS MR sequences demonstrated a contrast-to-noise ratio significantly better than any other routine imaging sequence (p < 0.001). Moreover, 3D CISS imaging can detect more subarachnoid webs and cavitations in the syrinx than T2-weighted MR imaging with less flow-void artifact. The limitation of 3D CISS imaging is a susceptibility to motion artifacts that can cause reduced spatial resolution. Lengthy acquisition times for axial segments can be reduced with multiplanar reconstruction of 3D CISS–generated sagittal images. Conclusions Constructive interference in steady-state imaging is the MR sequence of choice in the preoperative evaluation of syringomyelia, allowing significantly higher detection rates of focal subarachnoid webs, whereas standard T2-weighted MR imaging shows turbulent CSF flow voids. Constructive interference in steady-state MR imaging enables the neurosurgeon to accurately identify cases requiring decompression for obstructed CSF. Motion artifacts can be eliminated with technical variations.

2008 ◽  
Vol 44 (6) ◽  
pp. 509-512 ◽  
Author(s):  
Kimiaki Hashiguchi ◽  
Takato Morioka ◽  
Kazuhiro Samura ◽  
Fumiaki Yoshida ◽  
Yasushi Miyagi ◽  
...  

2000 ◽  
Vol 93 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Henry W. S. Schroeder ◽  
Christiane Schweim ◽  
Klaus H. Schweim ◽  
Michael R. Gaab

Object. The purpose of this prospective study was to evaluate aqueductal cerebrospinal fluid (CSF) flow after endoscopic aqueductoplasty. In all patients, preoperative magnetic resonance (MR) imaging revealed hydrocephalus caused by aqueductal stenosis and lack of aqueductal CSF flow.Methods. In 14 healthy volunteers and in eight patients with aqueductal stenosis who had undergone endoscopic aqueductoplasty, aqueductal CSF flow was investigated using cine cardiac-gated phase-contrast MR imaging. For qualitative evaluation of CSF flow, the authors used an in-plane phase-contrast sequence in the midsagittal plane. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct. Evaluation revealed no significant difference in aqueductal CSF flow between healthy volunteers and patients with regard to temporal parameters, CSF peak and mean velocities, mean flow, and stroke volume. All restored aqueducts have remained patent 7 to 31 months after surgery.Conclusions. Aqueductal CSF flow after endoscopic aqueductoplasty is similar to aqueductal CSF flow in healthy volunteers. The data indicate that endoscopic aqueductoplasty seems to restore physiological aqueductal CSF flow.


2011 ◽  
Vol 14 (3) ◽  
pp. 398-404 ◽  
Author(s):  
Jonathan M. Morris ◽  
Timothy J. Kaufmann ◽  
Norbert G. Campeau ◽  
Harry J. Cloft ◽  
Giuseppe Lanzino

Although more prevalent in males in the 6th and 7th decade of life, spinal dural arteriovenous fistulas (SDAVFs) are an uncommon cause of progressive myelopathy. Magnetic resonance imaging and more recently Gd bolus MR angiography have been used to diagnose, radiographically define, and preprocedurally localize the contributing lumbar artery. Three-dimensional myelographic MR imaging sequences have recently been developed for anatomical evaluation of the spinal canal. The authors describe 3 recent cases in which volumetric myelographic MR imaging with a 3D phase-cycled fast imaging employing steady state acquisition (PC-FIESTA) and a 3D constructive interference steady state (CISS) technique were particularly useful not only for documenting an SDAVF, but also for providing localization when CT angiography, MR imaging, MR angiography, and spinal angiography failed to localize the fistula. In a patient harboring an SDAVF at T-4, surgical exploration was performed based on the constellation of findings on the PC-FIESTA images as well as the fact that the spinal segments leading to T-4 were the only ones that the authors were unable to catheterize. In a second patient, who harbored an SDAVF at T-6, after 2 separate angiograms failed to demonstrate the fistula, careful assessment of the CISS images led the authors to focus a third angiogram on the left T-6 intercostal artery and to perform superselective microcatheterization. In a third patient with an SDAVF originating from the lateral sacral branch, the PC-FIESTA sequence demonstrated the arterialized vein extending into the S-1 foramen, leading to a second angiogram and superselective internal iliac injections. The authors concluded that myelographic MR imaging sequences can be useful not only as an aid to diagnosis but also for localization of an SDAVF in complex cases.


2009 ◽  
Vol 10 (4) ◽  
pp. 366-373 ◽  
Author(s):  
Kern H. Guppy ◽  
Mark Hawk ◽  
Indro Chakrabarti ◽  
Amit Banerjee

The authors present 2 cases involving patients who presented with myelopathy. Magnetic resonance imaging of the cervical spine showed spinal cord signal changes on T2-weighted images without any spinal cord compression. Flexion-extension plain radiographs of the spine showed no instability. Dynamic MR imaging of the cervical spine, however, showed spinal cord compression on extension. Compression of the spinal cord was caused by dynamic anulus bulging and ligamentum flavum buckling. This report emphasizes the need for dynamic MR imaging of the cervical spine for evaluating spinal cord changes on neutral position MR imaging before further workup for other causes such as demyelinating disease.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Richard D. White ◽  
Avinash K. Kanodia ◽  
Esther M. Sammler ◽  
John N. Brunton ◽  
Craig A. Heath

We report a case of temporal lobe epilepsy and incomplete Brown-Sequard syndrome of the thoracic cord. Computed tomography and magnetic resonance (MR) imaging showed multiple supratentorial masses with the classical radiological appearances of multifocal dysembryoplastic neuroepithelial tumour (DNET). Spinal MR imaging revealed intradural lipomas, not previously reported in association with multifocal DNET. Presentation and imaging findings are discussed along with classification and natural history of the tumour.


1992 ◽  
Vol 76 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Edward D. Wirth ◽  
Daniel P. Theele ◽  
Thomas H. Mareci ◽  
Douglas K. Anderson ◽  
Stacey A. Brown ◽  
...  

✓ Magnetic resonance (MR) imaging was evaluated for its possible diagnostic application in determining the survival of fetal central nervous system tissue grafts in the injured spinal cord. Hemisection cavities were made at the T11—L1 level of eight adult female cats. Immediately thereafter, several pieces of tissue, either obtained from the fetal cat brain stem on embryonic Day 37 (E-37), from the fetal neocortex on E-37, or from the fetal spinal cord on E-23, were implanted into the cavities made in seven cats. The eighth cat served as a control for the effect of the lesion only. In another group of four animals, a static-load compression injury was made at the L-2 level. Seven weeks later, the lesion was resected in three cases and fragments of either fetal brainstem or spinal cord tissue were introduced. A small cyst was observed in a fourth cat in the compression injury group and a suspension of dissociated E-23 brain-stem cells was injected into this region of cavitation without disturbing the surrounding leptomeninges. Five months to 2 years posttransplantation, MR imaging was performed with a 2.0-tesla VIS imaging spectrometer by acquiring multislice spin-echo images (TR 1000 msec, TE 30 msec) in both the transverse and sagittal planes. Collectively, these intermediate-weighted images revealed homogeneous, slightly hyperintense signals at the graft site relative to the neighboring host tissue in seven of the 11 graft recipients. Two of the remaining four cats exhibited signals from the graft site that were approximately isointense with the adjacent host spinal cord, and the final two cats and the lesion-only control presented with very hypointense transplant/resection regions. The hyperintense and isointense images were tentatively interpreted as representing viable graft tissue, whereas the hypointense transplant/resection sites were considered to be indicative of a lack of transplant survival or the absence of tissue in the lesion-only control animal. Postmortem gross inspection of fixed specimens and light microscopy verified the MR findings in the control animal in 10 of the 11 graft recipients by showing either transplants and/or cysts corresponding to the MR images obtained. In one cat in the hemisection group, histological analysis revealed a very small piece of graft tissue that was not detected on the MR images. Therefore, it is suggested that within certain spatial- and contrast-resolution limits, MR imaging can reliably detect the presence of transplanted neural tissue in both the hemisected and compression-injured spinal cord of living animals. Thus, MR imaging can serve as an important adjunct to histological, electrophysiological, and long-term behavioral analyses of graft-mediated anatomical and functional repair of the injured spinal cord. It is further suggested that this noninvasive diagnostic approach offers many advantages in terms of the judicious and optimum use of valuable animal models, and that these findings address an important prerequisite (in situ verification of transplant survival) for any future clinical trials involving these or equivalent neural tissue grafting approaches, when such are warranted.


2008 ◽  
Vol 8 (3) ◽  
pp. 286-287 ◽  
Author(s):  
Daniel R. Fassett ◽  
James S. Harrop ◽  
Alexander R. Vaccaro

✓The authors describe a rare case of Brown–Séquard syndrome as a result of indirect, concussive trauma to the spinal cord from a gunshot wound (GSW) and present the magnetic resonance (MR) imaging evidence obtained in this interesting case. The patient was shot in the anterior neck and the bullet passed through the lateral aspect of the C-7 lateral mass and transverse process. Bone fragments from the lateral aspect of C-7 were displaced posteriorly into the soft tissues, but no abnormalities were noted within the spinal canal except for high-intensity signal on T2-weighted MR imaging within the right side of the spinal cord. This is the first reported case to provide MR imaging evidence of a Brown–Séquard spinal cord injury as a result of indirect trauma (concussive injury) from a GSW.


1996 ◽  
Vol 37 (1P1) ◽  
pp. 69-74 ◽  
Author(s):  
C. Bartolozzi ◽  
R. Lencioni ◽  
D. Caramella ◽  
A. Palla ◽  
A. M. Bassi ◽  
...  

Twenty-two patients with 37 small (3 cm or less) nodular lesions of hepatocellular carcinoma (HCC) were examined with ultrasonography (US), CT, MR imaging, digital subtraction angiography (DSA), and CT following intraarterial injection of Lipiodol (Lipiodol-CT). All patients subsequently underwent surgery, and the gold standard was provided by intraoperative US. The detection rate was 70% for US, 65% for CT, 62% for MR imaging, 73% for DSA, and 86% for Lipiodol-CT. A significant difference (p<0.05) was observed between the detection rate of Lipiodol-CT and the detection rates of all the other imaging modalities. The difference was even more manifest (p<0.02) when only lesions smaller than or equal to 1 cm were considered. It is concluded that Lipiodol-CT is the single most sensitive examination to detect small nodules of HCC. It should therefore be considered a mandatory step in the preoperative evaluation of patients with HCC considered to be surgical candidates after noninvasive imaging studies.


2000 ◽  
Vol 8 (3) ◽  
pp. 1-6 ◽  
Author(s):  
Thomas H. Milhorat

Syringomyelia poses special challenges for the clinician because of its complex symptomatology, uncertain pathogenesis, and multiple options of treatment. The purpose of this study was to classify intramedullary cavities according to their most salient pathological and clinical features. Pathological findings obtained in 175 individuals with tubular cavitations of the spinal cord were correlated with clinical and magnetic resonance (MR) imaging findings in a database of 927 patients. A classification system was developed in which the morbid anatomy, cause, and pathogenesis of these lesions are emphasized. The use of a disease-based classification of syringomyelia facilitates diagnosis and the interpretation of MR imaging findings and provides a guide to treatment.


Sign in / Sign up

Export Citation Format

Share Document