scholarly journals Herlyn Werner Wunderlich Syndrome Presenting with Ischemic Stroke due to Suspected Paroxysmal Nocturnal Hemoglobinuria: A Case Report

2021 ◽  
Vol 59 (234) ◽  
Author(s):  
Ayushma Acharya ◽  
Prajwala Yogi ◽  
Pramod Singh ◽  
Tulsi Ram Bhattarai

Paroxysmal nocturnal hemoglobinuria can rarely present as cerebral ischemia and stroke due to arterial thrombosis. However, it should be considered in a young patient with bone marrow failure features, systemic thromboses, and hemolysis. The variants of paroxysmal nocturnal hemoglobinuria pose a diagnostic challenge and hence are important to recognize. We report a case of a 28-years-old female with Herlyn Werner Wunderlich Syndrome who presented with an ischemic cerebrovascular accident, pancytopenia, hemoglobinuria, and widespread abdominal thromboses suggestive of paroxysmal nocturnal hemoglobinuria. The patient was managed symptomatically and referred toa hematologist.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5166-5166
Author(s):  
Fabienne Pineau-Vincent ◽  
Pierre Lemaire ◽  
Habib Ghnaya ◽  
Guillaume Direz ◽  
Mohamed Kaabar ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disease, associated with hemolytic anemia and bone marrow failure. The cellular abnormality is a mutation in the phosphatidylinositol glycan class (PIG A) resulting in a deficiency of glycosylphosphadityl-inositol (GPI)-anchored complement regulatory proteins, including CD 55 and CD59, on the surface of blood cells. Case report We report the case of a French, 81 year-old-man, who was admitted to our institution with an unusual clinical presentation. He had a rheumatologic monitoring in the context of polyarthritis associated with anemia (98g/L). No hemolytic events were noticed and there was no notion of either transfusion. Biological results showed hemolytic regenerative anemia (98g/L) with 136G/L of reticulocytes, neutrophil polynuclears (4.2G/L) without degranulation and nevertheless rare degranulation cells, no blasts, normal level of platelets (258G/l), increase of LDH (Nx3), low haptoglobin (0.07g/L), negative direct Coombs test. The cytology aspect of medullar cells associated dysgranulopoiesis with degranulation of myeloid lineage and abnormal chromatin condensation, dyserythropoiesis, dysmegacaryopoiesis, in favor of a multilineage dysplasia without blasts. The marrow karyotype was normal. Due to the morphological results observed on the blood smear and their dissociation with the medullary cytology, flow cytometry (FC500) for GPI‘s expression study was performed. The used antisera were: CD55, CD59, CD14, CD16, CD24, CD66b, CD157, no FLEAR was tested. Results TableBloodBone marrowMononuclear cells CD14 FL378% intermediar cells70% negative cellsNeutrophil cells CD16 PE56% intermediar cells56% negative cellsNeutrophil cells CD66b FITC57% negative cells70% negative cellsGranular cells CD24 PE49% negative cells62% negative cellsRed cells CD55 FITC10% negative cells11% negative cellsRed cells CD59 FITC12% negative cells12% negative cells Figure 1 Blood Figure 1. Blood Figure 2 Bone Marrow Figure 2. Bone Marrow The confirmation was obtained by using CD157PE antisera on bone marrow with 70% negative mononuclear and granular cells. The results confirmed the PNH clone’s presence in the blood and also in bone marrow, and the results of flow cytometry could explain the cytological aspect of neutrophil polynuclear cells. It is rare to explore the expression of GPI molecules in bone marrow and there is no publication about the PNH clone whose identification required bone marrow cells for the confirmation of abnormalities in blood. Thus, the apoptosis in the bone marrow of the defective myeloid cells would explain the difference of granularity of polynuclear cells between bone marrow and blood smear. Conclusion The significance of this observation is related to the search of a PNH clone when cytological dissociation is observed between the peripheral blood and bone marrow, associated with biological hemolysis arguments (increased LDH and decreased haptoglobin). It is well known that 6 at 8% of myelodysplasia had PNH clone; the originality of this case report is the initial clinical signs and the laboratory proof of PNH in the blood and the bone marrow. This observation was submitted at the national reference center of PNH in France (St Louis Hospital - Hematology Department - Professor SOCIE) and the treatment by eculizumab was introduced. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Ke-Yang Chen ◽  
Lin-Shuang Tao ◽  
Ni Sun ◽  
Song-Fang Chen ◽  
Bei-Lei Hu

Abstract Myelodysplastic syndrome (MDS) is a bone marrow failure syndrome characterized by cytopenia that results in infection and bleeding. However, there are few reports of cerebral infarction in MDS. In this case report we reported a Chinese female patient diagnosed MDS without drugs and an onset of acute cerebral infarction. Imaging examinations showed an ischemic stroke and further bone marrow aspiration identified MDS in the patient. Low dose aspirin and rehydration were used to improve symptom, as well as anti-epileptic drugs and rehabilitation. We also reviewed acute cerebral infarction associated with MDS from a total of three reported cases without drugs for the treatment of MDS. Our data provide further evidence that acute ischemic stroke might be associated with MDS, which may be due to complex chromosomal abnormality and inflammatory processes.


2016 ◽  
Vol 8 (3) ◽  
pp. 119-126 ◽  
Author(s):  
Morag Griffin ◽  
Talha Munir

Paroxysmal nocturnal haemoglobinuria (PNH), an ultra-orphan disease with a prevalence of 15.9 per million in Europe, is a life-threatening disorder, characterized by haemolysis, bone marrow failure and thrombosis. Patients with PNH prior to the availability of eculizumab had a median survival of between 10 and 22 years, with thrombosis accounting for 22–67% of deaths. 29–44% of patients had at least one thrombosis. This paper provides a clinician’s guide to the diagnosis, management and complications of PNH, with an emphasis on thrombosis.


2017 ◽  
Vol 4 ◽  
pp. 2333794X1774494 ◽  
Author(s):  
Lauren Azevedo ◽  
Allison Jay ◽  
Adonis Lorenzana ◽  
Sioban Keel ◽  
Roshini S. Abraham ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3674-3674
Author(s):  
Nobuyoshi Hanaoka ◽  
Tatsuya Kawaguchi ◽  
Kentaro Horikawa ◽  
Shoichi Nagakura ◽  
Sonoko Ishihara ◽  
...  

Abstract Immune mechanism is considered to exert in the pathogenesis of marrow failure in paroxysmal nocturnal hemoglobinuria (PNH), idiopathic aplastic anemia (AA) and myelodysplastic syndromes (MDS); however, the molecular events are unknown. We have currently reported the appearance of NKG2D ligands such as cytomegalovirus glycoprotein UL16 binding proteins (ULBPs) and MHC class I-related chains A and B (MICA/B) on granulocytes and CD34+ marrow cells of some patients with PNH and its related diseases (Hanaoka N, et al. Blood. 2006;107:1184–1191). ULBP and MICA/B are stress-inducible membrane proteins that appear in infection and transformation. The ligands share NKG2D receptor on lymphocytes such as NK, CD8+ T, and γδ T-cells and promote activation of the lymphocytes. Cells expressing the ligands are then deadly injured by NKG2D+ lymphocytes (Groh, PNAS 1996; Cosman, Immunity 2001). Indeed, cells expressing NKG2D ligands were killed in vitro by autologous NKG2D+ lymphocytes of our patients (Hanaoka N, et al. Blood. 2005;106:304a; Blood. 2006;108:295a). In further analysis, ligands were detected on granulocytes in 47 (53%) of 88 patients: 11 (58%) of 19 PNH, 28 (60%) of 47 AA, and 8 (36%) of 22 refractory anemia. Ligands were also detected on immature bone marrow cells in all 11 patients (3 PNH, 5 AA, and 3 refractory anemia) who permitted analysis of their marrow cells. In the patients, it is conceivable that blood cells were exposed to a certain stress to induce NKG2D ligands, leading to NKG2D-mediated marrow injury. We also observed a close association of the ligand expression with pancytopenia and favorable response to immunosuppressive therapy by prospective analysis of 5 patients (3 AA-PNH syndrome and 2 AA) for more than one year up to 5 years. Thus, we here propose that NKG2D-mediated immunity, which drives both NK and T-cells, is critically implicated in the pathogenesis of bone marrow failure of PNH and its related disorders.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4215-4215
Author(s):  
Sandra van Bijnen ◽  
Konnie Hebeda ◽  
Petra Muus

Abstract Abstract 4215 Introduction Paroxysmal Nocturnal Hemoglobinuria (PNH) is a disease of the hematopoietic stem cell (HSC) resulting in a clone of hematopoietic cells deficient in glycosyl phosphatidyl inositol anchored proteins. The clinical spectrum of PNH is highly variable with classical hemolytic PNH at one end, and PNH in association with aplastic anemia (AA/PNH) or other bone marrow failure states at the other end. It is still largely unknown what is causing these highly variable clinical presentations. Immune-mediated marrow failure has been suggested to contribute to the development of a PNH clone by selective damage to normal HSC. However, in classic PNH patients with no or only mild cytopenias, a role for immune mediated marrow failure is less obvious. No series of trephine biopsies has been previously documented of patients with PNH and AA/PNH to investigate the similarities and differences in these patients. Methods We have reviewed a series of trephine biopsies of 41 PNH patients at the time the PNH clone was first detected. The histology was compared of 27 patients with aplastic anemia and a PNH clone was compared to that of 14 patients with classic PNH. Age related cellularity, the ratio between myeloid and erythroid cells (ME ratio), and the presence of inflammatory cells (mast cells, lymphoid nodules and plasma cells) were evaluated. The relation with clinical and other laboratory parameters of PNH was established. Results Classic PNH patients showed a normal or hypercellular marrow in 79% of patients, whereas all AA/PNH patients showed a hypocellular marrow. Interestingly, a decreased myelopoiesis was observed not only in AA/PNH patients but also in 93% of classic PNH patients, despite normal absolute neutrophil counts (ANC ≥ 1,5 × 109/l) in 79% of these patients. The number of megakaryocytes was decreased in 29% of classic PNH patients although thrombocytopenia (< 150 × 109/l) was only present in 14% of the patients. Median PNH granulocyte clone size was 70% (range 8-95%) in classic PNH patients, whereas in AA/PNH patients this was only 10% (range 0.5-90%). PNH clones below 5% were exclusively detected in the AA/PNH group. Clinical or laboratory evidence of hemolysis was present in all classical PNH patients and in 52% of AA/PNH patients and correlated with PNH granulocyte clone size. Bone marrow iron stores were decreased in 71% of classic PNH patients. In contrast, increased iron stores were present in 63% of AA/PNH patients, probably reflecting their transfusion history. AA/PNH patients showed increased plasma cells in 15% of patients and lymphoid nodules in 37%, versus 0% and 11% in classic PNH. Increased mast cells (>2/high power field) were three times more frequent in AA/PNH (67%) than in PNH (21%). Conclusion Classic PNH patients were characterized by a more cellular bone marrow, increased erythropoiesis, larger PNH clones and clinically by less pronounced or absent peripheral cytopenias and more overt hemolysis. Decreased myelopoiesis and/or megakaryopoiesis was observed in both AA/PNH and classic PNH patients, even in the presence of normal peripheral blood counts, suggesting a role for bone marrow failure in classic PNH as well. More prominent inflammatory infiltrates were observed in AA/PNH patients compared to classical PNH patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3426-3426 ◽  
Author(s):  
Andrew Shih ◽  
Ian H. Chin-Yee ◽  
Ben Hedley ◽  
Mike Keeney ◽  
Richard A. Wells ◽  
...  

Abstract Abstract 3426 Introduction: Paroxysmal Nocturnal Hemoglobinuria (PNH) is a rare disorder due to a somatic mutation in the hematopoietic stem cell. The introduction of highly sensitive flow cytometric and aerolysin testing have shown the presence of PNH clones in patients with a variety of other hematological disorders such as aplastic anemia (AA) and myelodysplasic syndrome (MDS). It is hypothesized that patients with these disorders and PNH clones may share an immunologic basis for marrow failure with relative protection of the PNH clone, due to their lack of cell surface expression of immune accessory proteins. This is supported by the literature showing responsiveness in AA and MDS to immunosuppressive treatments. Preliminary results from a recent multicenter trial, EXPLORE, notes that PNH clones can be seen in 70% of AA and 55% of MDS patients, and therefore there may be utility in the general screening of all patients with bone marrow failure (BMF) syndromes. Furthermore, it has been suggested that the presence of PNH cells in MDS is a predictive biomarker that is clinically important for response to immunosuppressive therapy. Methods: Our retrospective cohort study in a tertiary care center used a high sensitivity RBC and FLAER assay to detect PNH clones as small as 0.01%. Of all patients screened with this method, those with bone marrow biopsy and aspirate proven MDS, AA, or other BMF syndromes (defined as unexplained cytopenias) were analysed. Results from PNH assays were compared to other clinical and laboratory parameters such as LDH. Results: Overall, 102 patients were initially screened over a 12 month period at our center. 30 patients were excluded as they did not have biopsy or aspirate proven MDS, AA, or other BMF syndromes. Of the remaining 72 patients, four patients were found to have PNH clones, where 2/51 had MDS (both RCMD, IPSS 0) [3.92%] and 2/4 had AA [50%]. The PNH clone sizes of these four patients were 0.01%, 0.01%, 0.02%, and 1.7%. None of the MDS patients with known recurrent karyotypic abnormalities had PNH clones present. Only one of the four patients had a markedly increased serum LDH level. Conclusions: Our retrospective study indicates much lower incidence of PNH clones in MDS patients or any patients with BMF syndromes when compared to the preliminary data from the EXPLORE trial. There is also significant disagreement in other smaller cohorts in regards to the incidence of PNH in AA and MDS. Screening for PNH clones in patients with bone marrow failure needs further study before adoption of widespread use. Disclosures: Keeney: Alexion Pharmaceuticals Canada Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wells:Alexion Pharmaceuticals Canada Inc: Honoraria. Sutherland:Alexion Pharmaceuticals Canada Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document