scholarly journals Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging Variables

2012 ◽  
Vol 33 (6) ◽  
pp. 1065-1071 ◽  
Author(s):  
E.I. Zacharaki ◽  
N. Morita ◽  
P. Bhatt ◽  
D.M. O'Rourke ◽  
E.R. Melhem ◽  
...  
2020 ◽  
Author(s):  
Akshaykumar Nana Kamble ◽  
Nidhi K Agrawal ◽  
Surabhi Koundal ◽  
Salil Bhargava ◽  
Abhaykumar Nana Kamble

AbstractRadiology based classification of glioma independent of histological or genetic markers predicting survival of patients is an unmet need. Until now radiology is chasing these markers rather than focussing directly on the clinical outcome. Our study is first of its kind to come up with the independent new radiological classification of gliomas encompassing both low-and high-grade gliomas under single classification system.TCGA-LGG and REMBRANDT public domain dataset of glioma were analyzed as training and testing dataset respectively. Based on MRI images, gliomas were classified into six types in detailed classification & three types in simplified classification system. Survival analysis using Kaplan Meier and Cox regression was done. Secondary objective was to evaluate the sensitivity and specificity of novel signs with existing histological and genetic markers.The study predicted survival in both training and testing dataset independent of genetic or histological information. Novel signs, “Ball on Christmas tree” sign(highly specific), Type-4 lineage sign(highly sensitive) identifies IDH-wild and high-grade gliomas (grade-III and IV) while Type-2 lineage sign showed good specificity in identifying 1p19q non co-deleted IDH-mutated, ATRX del/mutated, Grade-II gliomas. There is a substantial interobserver agreement for the classification and novel signs. New radiological classification of glioma predicts the survival of patients independent of genetic or histological information. This can act as a scaffolding to formulate and streamline the treatment guidelines for glioma patients. This classification has potential of improving the quality of care of glioma patients by predicting the survival without the need of invasive biopsy.


1993 ◽  
Vol 70 (03) ◽  
pp. 393-396 ◽  
Author(s):  
Mandeep S Dhami ◽  
Robert D Bona ◽  
John A Calogero ◽  
Richard M Hellman

SummaryA retrospective study was done to determine the incidence of and the risk factors predisposing to clinical venous thromboembolism (VTE) in patients treated for high grade gliomas. Medical records of 68 consecutive patients diagnosed and treated at Saint Francis Hospital and Medical Center from January 1986 to June 1991 were reviewed. The follow up was to time of death or at least 6 months (up to December 1991). All clinically suspected episodes of VTE were confirmed by objective tests. Sixteen episodes of VTE were detected in 13 patients for an overall episode rate of 23.5%. Administration of chemotherapy (p = 0.027, two tailed Fisher exact test) and presence of paresis (p = 0.031, two tailed Fisher exact test) were statistically significant risk factors for the development of VTE. Thrombotic events were more likely to occur in the paretic limb and this difference was statistically significant (p = 0.00049, chi square test, with Yates correction). No major bleeding complications were seen in the nine episodes treated with long term anticoagulation.We conclude that venous thromboembolic complications are frequently encountered in patients being treated for high grade gliomas and the presence of paresis and the administration of chemotherapy increases the risk of such complications.


Author(s):  
Michael A. Vogelbaum ◽  
Derek Kroll ◽  
Arnold Etame ◽  
Nam Tran ◽  
James Liu ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii231-ii232
Author(s):  
Katharine Halligan ◽  
Ann-Catherine Stanton ◽  
Matthew Halbert ◽  
Brian Golbourn ◽  
Stephen Mack ◽  
...  

Abstract Pediatric glioblastoma (pGBM) are incurable brain tumors with overall poor prognosis and response to treatments due to molecular and epigenetic heterogeneity. In particular, the MYCN subtype of pGBM are a highly aggressive form of GBM with a dismal median survival of only 14 months. Furthermore, this subtype is enriched with loss of the tumor suppressor genes TP53 and PTEN, leading to aberrantly active PI3K-AKT signaling pathway and DNA-checkpoint abnormalities. Here, we report the generation of a novel syngeneic mouse model that recapitulates the features of the MYCN subtype of pGBM. We isolated Sox2-Cre neural stem cells from C57BL/6 mice and transduced inverted retroviral-cassettes of the murine Mycn oncogene simultaneously with shRNA targeting tumor suppressor genes p53 and Pten. Retroviral-cassettes are flanked by tandem LoxP sites arranged so that Cre recombinase expression inverts the cassettes in frame allowing for MYCN protein expression and loss of the P53/PTEN proteins. Transgene activation is accompanied with selectable cell surface markers and fluorescent tags enabling for fluorescent activated cell sorting (FACS) of the desired cell populations. Neural stem cells with MYCN protein expression and concurrent silencing of P53 and PTEN protein (NPP cells) result in significantly increased proliferation and activation of PI3K-AKT pathway as compared to control neural stem cells and have. Injection of NPP cells into the forebrain of immune competent C57BL/6 mice result in the formation of invasive high-grade gliomas with a lethal phenotype at ~50 days post injection. Using several next generation brain penetrant small molecule inhibitors of the PI3K-AKT pathway, we show inhibition of tumorigenesis in vitro. Moreover, we have identified several novel mechanisms of PI3KAKT treatment resistance and are currently identifying therapies that may overcome this resistance through RNA seq analysis. In summary, well defined genetic drivers of GBM can lead to informed mouse model generation to test promising therapies.


Sign in / Sign up

Export Citation Format

Share Document