scholarly journals Finite element modelling of rectangular concrete-filled steel tube stub columns incorporating high strength and ultra-high strength materials under concentric axial compression

Author(s):  
Thai Son ◽  
Cuong Ngo-Huu ◽  
Dinh Van Thuat

This study presents a unified approach to simulate the behavior of rectangular concrete-filled steel stub columns incorporating high strength and ultra-high strength materials subjected to concentric axial compression. The finite element model is developed based on Abaqus software, which is capable of accounting for geometrical nonlinearity, material plasticity, and interaction between multi-physics. The proposed model incorporates the influences of residual stress for welded-box steel sections and initial imperfection. A novel stress-strain relation of confined concrete is proposed to account for the composite action, which might increase the strength and ductility of infilled concrete under multi-axial compressive conditions. Various verification examples are conducted with wide ranges of geometrical and material properties. The simulation results show that the proposed model can accurately predict the ultimate strength, load-deformation relations, and failure mode of the experimental specimens.

2011 ◽  
Vol 189-193 ◽  
pp. 1906-1909 ◽  
Author(s):  
Hua Luo ◽  
Zhi Gang Yan ◽  
Ming Zhe An

Reactive Powder Concrete (RPC) is a kind of cement-based composite which has ultra-high strength, high ductility and durability. RPC has great fragility, bad ductility and bursting fragility destruction subjected to high or complicated stress. The fragility performance of RPC will be improved when RPC is cast in steel tubes. The behavior of axially loaded RPC-filled steel tube circular stub columns is presented in this discussion according to the experiment and finite element analysis. An accurate finite element model was developed to carry out the analysis. Accurate nonlinear material models for confined concrete and steel tubes were used. The results obtained from the finite element analysis were verified against experimental results.


2018 ◽  
Vol 22 (5) ◽  
pp. 1089-1105 ◽  
Author(s):  
Xizhi Zhang ◽  
Sixin Niu ◽  
Jia-Bao Yan ◽  
Shaohua Zhang

In order to simulate the seismic behaviour of the prestressed high-strength concrete piles under working state, six full-scale prestressed high-strength concrete piles were tested under combined axial compression and cyclic horizontal loads. Different axial compression levels and prestressing levels of prestressed tendons were studied in this test programme. The failure mode, bending resistance, displacement ductility, stiffness degradation and energy dissipation of the prestressed high-strength concrete piles under different loading scenarios were measured and analysed. Test results indicated that the axial compression ratio and prestressing level of prestressed tendon significantly influenced the seismic performance of prestressed high-strength concrete piles. Theoretical models were developed to predict cracking, yielding and ultimate bending resistances of the prestressed high-strength concrete pile under combined compression and bending. Finite element model was also developed to simulate the ultimate strength behaviour of the prestressed high-strength concrete pile under combined compression and flexural bending. The accuracies of the theoretical and finite element model were checked through validations of their predictions against the reported test results.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jing Liu ◽  
Wen-jun Wang ◽  
Fa-xing Ding ◽  
Xin-fa Zeng ◽  
Zhe Tan ◽  
...  

This article presents the experimental and finite element (FE) analyses of two conventional rectangular concrete-filled steel tubular (CFT) stub columns, two stiffened rectangular concrete-filled steel tubular (SCFT) stub columns, and two stirrup confinement rectangular concrete-filled steel tubular (CCFT) stub columns concentrically loaded in compression to failure. The influences of the ductility and ultimate bearing strength of these stub columns with stiffening ribs or spiral stirrup confinement were discussed. Abaqus was used to establish a 3D FE model and analyze the properties of CFT stub columns subjected to axial compression. The effect of the concrete core and rectangular steel tube under loop stirrup confinement was discussed. Analytical results showed that spiral stirrup confinement can availably retard the local bucking of the rectangular steel pipe, and the effect of the spiral stirrup confinement was stronger than that of stiffeners. The DI values of SCFT and CCFT were 21.9% and 31.9% larger than those of CFT, respectively. The ultimate capacity values of SCFT and CCFT were 10.2% and 18% larger than those of CFT, respectively. The ductility and ultimate bearing strength of the specimens improved effectively under spiral stirrup confinement, and the ductility of the CCFT columns was preferable to that of the SCFT columns.


2014 ◽  
Vol 578-579 ◽  
pp. 335-339 ◽  
Author(s):  
Guo Chang Li ◽  
Bing Zhou ◽  
Jiang Hua Pan

The new composite structure concrete-filled square steel tube (CFST) column with inner CFRP profiles is proposed. A finite element model is presented to investigate the mechanical behavior of CFST short columns with internal CFRP profiles subjected to axial compression using ABAQUS based on reasonable constitutive models of materials. In a addition, the content of CFRP profiles and width thickness ratio of steel tube’ effect are considered on mechanical properties of the column. Based on the model, the whole stage of axial compression of the short columns, failure mode and the stress mechanism of the ultimate bearing capacity state are calculated and analyzed.


2011 ◽  
Vol 243-249 ◽  
pp. 51-54
Author(s):  
Ya Feng Xu ◽  
Peng Ju Sun ◽  
Li Zhang

According to the existed theory foundation, the authors made a simulated analysis on mechanical properties of a connection between steel reinforced concrete filled with steel tube column and steel beam, using ABAQUS, which is a finite element software. The authors established element model reasonably, and got load- displacement curve in different axial compression ratios. According to the result, with the increasing of axial compression ratio, the elements' limit bearing capacity reduces significantly.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2021 ◽  
Vol 35 ◽  
pp. 102072
Author(s):  
Benhao Gao ◽  
Jingfeng Wang ◽  
Qihan Shen ◽  
Chenggang Wang ◽  
Zhonghua Yu

2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2016 ◽  
Vol 850 ◽  
pp. 957-964
Author(s):  
Wei Zheng ◽  
Hong Zhang ◽  
Xiao Ben Liu ◽  
Le Cai Liang ◽  
Yin Shan Han

There is a potential for major damage to the pipelines crossing faults, therefore the strain-based design method is essential for the design of buried pipelines. Finite element models based on soil springs which are able to accurately predict pipelines’ responses to such faulting are recommended by some international guidelines. In this paper, a comparative analysis was carried out among four widely used models (beam element model; shell element model with fixed boundary; shell element model with beam coupled; shell element model with equivalent boundary) in two aspects: differences of results and the efficiency of calculation. The results show that the maximum and minimum strains of models coincided with each other under allowable strain and the calculation efficiency of beam element model was the highest. Besides, the shell element model with beam coupled or equivalent boundary provided the reasonable results and the calculation efficiency of them were higher than the one with fixed boundary. In addition, shell element model with beam coupled had a broader applicability.


Sign in / Sign up

Export Citation Format

Share Document