Finite Element Analyze for a Connection between Steel Reinforced Concrete Filled with Steel Tube Column and Steel Beam

2011 ◽  
Vol 243-249 ◽  
pp. 51-54
Author(s):  
Ya Feng Xu ◽  
Peng Ju Sun ◽  
Li Zhang

According to the existed theory foundation, the authors made a simulated analysis on mechanical properties of a connection between steel reinforced concrete filled with steel tube column and steel beam, using ABAQUS, which is a finite element software. The authors established element model reasonably, and got load- displacement curve in different axial compression ratios. According to the result, with the increasing of axial compression ratio, the elements' limit bearing capacity reduces significantly.

2013 ◽  
Vol 680 ◽  
pp. 172-176
Author(s):  
Bin Wang ◽  
Peng Ju Sun ◽  
Xin Wang ◽  
Ya Feng Xu

The paper focuses on the research of mechanical behavior of the CFRP steel reinforced concrete filled with steel tube column under biaxial load. The authors make a simulated analysis mode with the general finite element analyze software, ABAQUS. By the way of unit selecting, meshing, contact setting, the mode is calculated by the ABAQUS/Standard which is used to analyze the mechanical behavior of the specimens. Based on comparing the load-displacement curves under different axial compression ratios, it can conclude that with the increasing of compression, the ultimate load reduces obviously. At the same time, the ductility coefficient also descended slowly. All the ductility coefficients of different specimens are all larger than 2, which meet the code very well. So the mechanical behavior of the column is very well.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2012 ◽  
Vol 588-589 ◽  
pp. 203-207
Author(s):  
Chi Yun Zhao ◽  
Hua Li ◽  
Li Yun Li

The nonlinear behavior of the full scale test of the composite joint between steel reinforced concrete beam and concrete filled steel tubular column under low cyclic reversed loading are simulated by using finite element software ANSYS. A separated model was used, element concrete solid 65, element shell 181 and element link 8 were used to model concrete material, steel members and steel bars respectively. The numerical analysis results are compared with the data of the experimental research. The advantages and shortcoming of the finite element model are given. A better numerical simulation method and a use for reference to the similar case are expected to be afforded.


2010 ◽  
Vol 163-167 ◽  
pp. 2106-2111
Author(s):  
Shan Shan Sun ◽  
Jun Hai Zhao ◽  
Xue Ying Wei ◽  
Hai Bing Xiao

The ultimate load-bearing capacities of axially-loaded steel tube composite column filled with steel reinforced concrete under three-dimensional stress based on the unified strength theory are analyzed in this paper. The influence of thickness-length ratio and scale effect are considered by introducing the reduction factor of equivalent constraints and concrete strength reduction factor, respectively. The nonlinear three-dimensional finite element analysis of the steel tube composite column filled with steel reinforced concrete is performed by the finite element software ANSYS. The numerical and the analytical results are compared with experimental results and good agreement can be observed. A series of numerical simulation technologies is studied and described in detail, such as selecting element type, defining material model of steel and concrete, establishing global finite element model with discrete reinforced bars elements, applying loads to the specimens, and setting solution controls option. The results indicate that ANSYS finite element software may well simulate the behavior of the steel tube composite column filled with steel reinforced concrete under axial compression through reasonably selecting parameters.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yongjun Lin ◽  
Kaiqi Liu ◽  
Tianxu Xiao ◽  
Chang Zhou

In this paper, in order to investigate the shear mechanism and shear capacity of framework joints of steel-reinforced concrete-filled circular steel tube (SRCFCST), a numerical finite element model reflecting the mechanical behavior of framework joints of SRCFCST column-reinforced concrete beam is established through simulating concrete by the damage plastic constitutive model and simulating steel by the ideal elastic-plastic material, and its effectiveness is verified by experimental data. On account of uniform distribution of circular steel reinforced around the section and without definite flange and web, the shear mechanism of the framework joints of SRCFCST is analyzed on the basis of equivalent circular steel tube (CST) to the rectangular steel tube. The method for calculating the superposed shear bearing capacities of the joint core area is proposed, which is composed of four parts, i.e., concrete inside tube, concrete outside tube, hooping and steel-reinforced web; and the corresponding formulas for calculating shear bearing capacity are established. The comparative analysis of joints’ shear bearing capacity indicates that the results of numerical simulation and shear bearing capacity formulas coincide well with the experimental values, which can provide reference for the nonlinear analysis and engineering design of similar joints.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2015 ◽  
Vol 1089 ◽  
pp. 299-302
Author(s):  
Lan Xiang Chen ◽  
De Shen Zhao ◽  
Lei Liu

To analyze the mechanical properties of steel tube filled with steel-reinforced concrete(STSRC), the mechanical models and some related problems of STSRC under different loading ways are proposed for the analysis on the base of finite element software: the concrete plastic damage constitutive model, the contact between steel and the treatment of boundary condition, etc. There are three types of specimen for analysis: short column, long column and pure bending beam. The results indicate that the mechanical models and the relevant technical analysis of STSRC are reasonable, and are beneficial to convergence. The discussed methods can provide a reference for the scholars to study on other composite steel-concrete structures.


2012 ◽  
Vol 490-495 ◽  
pp. 3177-3181
Author(s):  
Xiao Liu ◽  
Lei Zhao

Steel tube filled with steel-reinforced concrete (STSRC) is a new kind of heavy load column, which made by inserting steel skeletons into the steel tube, then injecting the concrete to the tube. In order to study the combined column’s stability subject to axial compression, we use energy method and numerical methods analysis derives the formula of stability coefficient in which slenderness ratio as the main parameters. Using the 1/1000 column length as the initial deflection of the STSRC columns by FORTUNE calculation program, stability coefficient is produced through comparison and analysis between calculated results from quantile regression and that from ordinary least square regression respectively. According to the computer results and energy method, the formula for calculating the axial stability bearing capacity of STSRC was established. A good agreement between the calculation results and testing results illustrates, which is feasible to using the calculating formula to calculate the bearing capacity of STSRC


2020 ◽  
Vol 198 ◽  
pp. 01029
Author(s):  
Yaohui Shen ◽  
Longbin Lin ◽  
Zhengwei Feng

The finite element software ANSYS is used to calculate the ultimate bearing capacity of ordinary beam and circular hole beam, and the results are compared with the test values made by predecessors. The value of shear transfer coefficient between cracks of reinforced concrete beam with circular hole in the abdomen in ANSYS finite element simulation is summarized. The coefficient is used to simulate the circular hole beam strengthened by steel sleeve, and it is pointed out that the steel tube is used to reinforce the circular hole beam The effect of tube reinforcement on the bearing capacity of circular hole beam is not obvious.


Sign in / Sign up

Export Citation Format

Share Document