ADJOINT MULTIVARIABLE REPETITIVE CONTROL ALGORITHM FOR ACTIVE CONTROL OF VIBRATION

2007 ◽  
Vol 40 (14) ◽  
pp. 228-233
Author(s):  
J. Hätönen ◽  
F. Zhang ◽  
S. Daley ◽  
D.H. Owens
2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Wander Gustavo Rocha Vieira ◽  
Fred Nitzsche ◽  
Carlos De Marqui

In recent decades, semi-active control strategies have been investigated for vibration reduction. In general, these techniques provide enhanced control performance when compared to traditional passive techniques and lower energy consumption if compared to active control techniques. In semi-active concepts, vibration attenuation is achieved by modulating inertial, stiffness, or damping properties of a dynamic system. The smart spring is a mechanical device originally employed for the effective modulation of its stiffness through the use of semi-active control strategies. This device has been successfully tested to damp aeroelastic oscillations of fixed and rotary wings. In this paper, the modeling of the smart spring mechanism is presented and two semi-active control algorithms are employed to promote vibration reduction through enhanced damping effects. The first control technique is the smart-spring resetting (SSR), which resembles resetting control techniques developed for vibration reduction of civil structures as well as the piezoelectric synchronized switch damping on short (SSDS) technique. The second control algorithm is referred to as the smart-spring inversion (SSI), which presents some similarities with the synchronized switch damping (SSD) on inductor technique previously presented in the literature of electromechanically coupled systems. The effects of the SSR and SSI control algorithms on the free and forced responses of the smart-spring are investigated in time and frequency domains. An energy flow analysis is also presented in order to explain the enhanced damping behavior when the SSI control algorithm is employed.


Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


Author(s):  
Wendong Wang ◽  
Xing Ming ◽  
Yang Chu ◽  
Minghui Liu ◽  
Yikai Shi

To restrain the interference of micro-vibration caused by Control Moment Gyroscope, a new control method based on Magnetorheological damper was proposed in this paper. A mechanical model based on the structure of the presented design was built, and the semi-active control algorithm of damping force was proposed for the designed Magnetorheological damper. The magnetic flux density and other magnetic field parameters were considered and analyzed in Maxwell, and also the related hardware circuit which implements the control algorithm was prepared to test the presented design and algorithm. The results of simulation and experiments show that the presented Magnetorheological damper model and semi-active control algorithm can complete the requirements, and the vibration suppression method is efficient for Control Moment Gyroscope.


Author(s):  
Omkar Karhade ◽  
Levent Degertekin ◽  
Thomas Kurfess

Micromachined Scanning Grating Interferometer (μSGI) array offers a viable solution to the high resolution, large bandwidth, non-contact and high throughput metrology. Parallel active control of μSGIs is necessary to reduce the effect of positioning errors and ambient vibration noise. To achieve individual control of the μSGIs, the gratings in the μSGI are micromachined on Silicon membranes, which can be electrostatically actuated. These tunable gratings are designed to have sufficient range of motion (∼400nm) and sufficient bandwidth (∼50kHz) for effective noise reduction. The tunable gratings are fabricated successfully using Silicon on Insulator wafers with a two mask process. A novel recurrent calibration based control algorithm is designed to actively control the tunable gratings. The novel algorithm is implemented digitally using FPGA on an array of μSGIs simultaneously. The algorithm compensates for the non-linearities of the actuator and problem due to limited range of motion. A system model is built to design and analyze the control algorithm and is verified by experimental results. Experimental results show 100 times noise reduction at low frequencies and 6.5kHz noise reduction cutoff frequency. A resolution of 1×10−4 nmrms/√Hz is achieved by implementation of this algorithm on μSGI.


1997 ◽  
Vol 63 (606) ◽  
pp. 423-430
Author(s):  
Mitsuru NAKAMURA ◽  
Minoru SASAKI ◽  
Fumio FUJISAWA ◽  
Daisuke TSUKAHARA ◽  
Yasunori YAMADA ◽  
...  

Author(s):  
Ghenadie Bulat ◽  
Dorian Skipper ◽  
Robin McMillan ◽  
Khawar Syed

This paper presents a system for the active control of the fuel split within a two-stream Dry Low Emissions (DLE) gas turbine. The system adjusts the fuel split based upon the amplitude of combustor pressure fluctuations and burner metal temperature. The active control system, its implementation and its performance during engine tests on Siemens SGT-200 is described. The paper describes the active fuel split control algorithm. Engine test results are then presented for steady and transient loads with different rates of change of the engine operation temperature, including rapid load acceptance and load shedding. Additionally, cycling operating conditions were tested to evaluate the performance of the algorithm in typical island mode and mechanical drive applications. The active control algorithm was successful in providing stable and reliable control of the turbine allowing very low emissions levels to be attained without manual intervention. In fact it allows areas to be reached that until now were excluded. The impact of operational parameter changes (e.g. load change, ambient temperature, fuel composition etc.) on the engine operability proved the active control software’s ability to respond seamlessly. In addition, it prevented flameout and/or high pressure fluctuation while keeping burner temperatures within limits. Recorded emissions showed a reduction in NOx was achieved when the fuel split was controlled by the algorithm compared to standard operation. This was a direct result of the algorithm successfully identifying the lean stability limit and operating close to it.


Author(s):  
Sandipan Mishra ◽  
Manabu Yamada ◽  
Masayoshi Tomizuka

Repetitive control has been used extensively for rejection of periodic disturbances, in systems that have to follow periodic trajectories. To date, most repetitive controllers have focused on rejection of additive periodic disturbances. This paper suggests the use of a repetitive control algorithm for rejection of periodic multiplicative disturbances. The first result is a simple design method of a new controller to reject the multiplicative disturbance effectively, provided that the period of the disturbance is known. This controller is based on the internal model principle and the design method consists of a simple norm condition. It is shown that this repetitive-type controller can reject the disturbance. The second result is an extension of the first one to the case that the period of the disturbance is unknown. A period estimator is added to the control system to identify the period of the multiplicative disturbance. The algorithm, consisting of an adaptive recursive least mean square method, is simple. It is shown that this adaptive controller can reject the disturbance with an uncertain period and guarantee the stability of the adaptive closed-loop system including the period estimator.


Sign in / Sign up

Export Citation Format

Share Document