Effect of inoculum levels of Rhizoctonia solani and Meloidogyne incognita on chile pepper in soil simultaneously infested with both pathogens

2018 ◽  
Vol 19 (3) ◽  
2013 ◽  
Vol 93 (1) ◽  
pp. 67-69 ◽  
Author(s):  
A. Al-Hammouri ◽  
W. Lindemann ◽  
S. Sanogo ◽  
S. Thomas ◽  
R. Steiner

Al-Hammouri, A., Lindemann, W., Sanogo, S., Thomas, S. and Steiner, R. 2013. Short Communication: Interaction between Rhizoctonia solani and Meloidogyne incognita on chile pepper in soil infested simultaneously with both plant pathogens. Can. J. Plant Sci. 93: 67–69. The interaction of Rhizoctonia solani and Meloidogyne incognita was examined on chile. The frequency of recovery of Rhizoctonia, Meloidogyne egg counts, the Meloidogyne reproduction factor, and plant growth parameters were measured at 45, 60, and 75 d after soil infestation. The reproduction rate of M. incognita was not affected by the presence of R. solani. Similarly, R. solani infection was not affected by the presence of M. incognita. Neither plant biomass nor plant physiological measurements were affected by co-infectation with R. solani and M. incognita. These results indicate that little or no synergistic effect between R. solani and M. incognita occurred as a result of co-infection, and that no added adverse impact on chile occurred.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Manzoor R. Khan ◽  
Zaki A. Siddiqui

AbstractEffects of Pseudomonas putida and Bacillus subtilis alone, and in combinations for the management of Meloidogyne incognita, Pectobacterium betavasculorum, and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.), were studied. Application of P. putida or B. subtilis to plants with M. incognita or P. betavasculorum or R. solani singly or in combinations caused a significant increase in plant growth parameters and the activities of defense enzymes. A significant increase in chlorophyll fluorescence attributes, viz., Fv/Fm, ɸPSII, qP, NPQ, and ETR were recorded in plants treated with P. putida or B. subtilis over pathogen-inoculated plants. Inoculation of P. putida results in a higher reduction in galling and nematode multiplication than B. subtilis. Maximum reduction in nematode multiplication and galling occurred when a mixture of P. putida and B. subtilis was used. Soft rot and root rot indices were 3 when Pectobacterium betavasculorum and Rhizoctonia solani were inoculated alone. The disease indices were rated 5 when these pathogens and M. incognita were inoculated in combinations. Inoculation of P. putida/B. subtilis with P. betavasculorum or R. solani reduced soft rot and root rot indices to 2 out of 3, while the use of P. putida + B. subtilis reduced indices to 1. Disease indices were reduced to 2–3 out of 5, when P. putida + B. subtilis were used to plants inoculated with two or three pathogens. The principal component analysis showed significant correlations among the various studied attributes. Two principal components explained a total of 86.1 and 93.4% of the overall data variability. Therefore, the use of P. putida together with B. subtilis had the potential for successful management of disease complex of beetroot.


2013 ◽  
Vol 14 (1) ◽  
pp. 8 ◽  
Author(s):  
S. Sanogo ◽  
J. Schroeder ◽  
S. Thomas ◽  
L. Murray ◽  
N. Schmidt ◽  
...  

The chile pepper (Capsicum annuum) crop is affected by several pests, pathogens, and weeds including Verticillium dahliae, Meloidogyne incognita, spurred anoda (Anoda cristata), Wright groundcherry (Physalis acutifolia), and tall morningglory (Ipomoea purpurea). These weed species are unimpaired hosts to V. dahliae and M. incognita. Chile plants have been found co-infected with V. dahliae and M. incognita in commercial fields. Greenhouse studies were conducted to determine the relationships among V. dahliae, M. incognita, and each of the four aforementioned plant species. Plants were either non-inoculated or inoculated with V. dahliae, M. incognita, or V. dahliae plus M. incognita. Six weeks after inoculation, plant infection by V. dahliae, M. incognita reproduction, plant height and biomass were measured. Three relationships were identified: V. dahliae was recovered from 100% of all four inoculated plant species, irrespective of M. incognita treatment; V. dahliae and M. incognita enhanced or had no effect on weed biomass but were pathogenic to chile; and co-infection by V. dahliae had no effect on nematode reproduction in the first M. incognita generation on the crop or weeds. These biological relationships suggest that the competitive impact of the weeds may increase and pathogen diversity may be affected in infested fields, ultimately impacting the efficacy of our common IPM tools. Accepted for publication 17 July 2013. Published 20 September 2013.


2020 ◽  
pp. 1-18
Author(s):  
Manzoor R. Khan ◽  
Zaki A. Siddiqui

Abstract Effect of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani alone, pre, post and simultaneous inoculations to find out role of each pathogen on growth, chlorophyll and carotenoid, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) activities and proline, H2O2 and malondialdehyde (MDA) of beetroot (Beta vulgaris L). Inoculation of plants with M. incognita / P. betavasculorum or R. solani reduced plant growth (root dry weight) (42.0%), chlorophyll (24.2%) and carotenoid (47.7%) while inoculation of pathogens under study resulted in increased activities of antioxidant enzymes, proline, H2O2 and MDA. Combined inoculation of pathogens under study resulted in greater reduction of plant growth (74.9%), chlorophyll (55.3%) and carotenoid (83.7%) than individual pathogen. Greatest reduction in plant growth, chlorophyll and carotenoid and maximum activities of antioxidant enzymes, proline, H2O2 and MDA were observed when M. incognita was inoculated 20 days prior to P. betavasculorum plus R. solani. P. betavasculorum and R. solani reduced galling and nematode multiplication but maximum reduction in galling (82.8%) and nematode multiplication (82.7%) was observed when P. betavasculorum plus R. solani were inoculated prior to nematodes. Necrosis soft rot and root rot indices by P. betavasculorum and R. solani were 3 respectively. Disease indices were 5 when two or more pathogens were inoculated together. Prior inoculation of M. incognita predisposed beetroots to P. betavasculorum and R. solani and aggravates the disease.


2013 ◽  
Vol 12 (2) ◽  
pp. 178-184 ◽  
Author(s):  
Barakat E. Abu Irmaileh ◽  
Akel N. Mansour ◽  
Luma S. Al Banna ◽  
Huda O. Badwan

The search for disease resistance in wild types is continuing, in order to introduce resistant genes from wild relatives. In this study, we found that the wild melon Cucumis prophetarum was comparably more tolerant to salinity, the damping-off disease caused by the fungus Rhizoctonia solani and the root-knot nematode Meloidogyne incognita. The percentage of wild melon survival was 60% compared to that of the cultivated cucumber Cucumis sativus, which was 15%, when irrigated with NaCl at a concentration of 2500 ppm; and 96% for the wild melon compared with 44% for the cultivated cucumber when irrigated with CaSO4.2H2O at a concentration of 1000 ppm. Wild melon plants were more tolerant to R. solani attack, as only 20% of the plants were infested compared with 100% of infestation observed for the cultivated cucumber. The average number of nematode galls was 250 per plant on the cultivated cucumber when compared with 6.3 per plant on the wild species. Wild melon could be a potential source of resistant or tolerant genes that can be transferable to cultivated cucumbers.


Sign in / Sign up

Export Citation Format

Share Document