Characterization of Graphs with Maximum Degree and Tree Dom Strong Domination Number

2004 ◽  
Vol 4 (1) ◽  
pp. 62-89 ◽  
Author(s):  
Andreas Hoffjan

This study introduces content analysis as a method of examining the accountant's role. The empirical study is based on 73 advertisements, which are directed primarily at employees who are affected by the management accountant's work. The findings of the study indicate that the subject of accountancy is used particularly in connection with promises of “cost reduction.” Consequently, the majority of advertisements use the accountant stereotype of “savings personified.” In a professional context, the work ethic of the management accountant is given particular emphasis in the advertisements. He/she identifies him/herself with his/her task to the maximum degree, is regarded as loyal to his/her company and, for the most part, is well organized in his/her work. However, the characterization of the management accountant as a well disciplined company-person conflicts with the negative portrayal of his/her professional qualities. In advertisements, the management accountant is portrayed as a rather inflexible, passive, and uncreative specialist who, as a result of these qualities, often demotivates others. The personal characteristics of the management accountant are shown in a negative light. This gives him/her the unappealing image of a humorless, envious, dissociated, and ascetic corporate-person.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050025
Author(s):  
Manal N. Al-Harere ◽  
Mohammed A. Abdlhusein

In this paper, a new model of domination in graphs called the pitchfork domination is introduced. Let [Formula: see text] be a finite, simple and undirected graph without isolated vertices, a subset [Formula: see text] of [Formula: see text] is a pitchfork dominating set if every vertex [Formula: see text] dominates at least [Formula: see text] and at most [Formula: see text] vertices of [Formula: see text], where [Formula: see text] and [Formula: see text] are non-negative integers. The domination number of [Formula: see text], denotes [Formula: see text] is a minimum cardinality over all pitchfork dominating sets in [Formula: see text]. In this work, pitchfork domination when [Formula: see text] and [Formula: see text] is studied. Some bounds on [Formula: see text] related to the order, size, minimum degree, maximum degree of a graph and some properties are given. Pitchfork domination is determined for some known and new modified graphs. Finally, a question has been answered and discussed that; does every finite, simple and undirected graph [Formula: see text] without isolated vertices have a pitchfork domination or not?


2018 ◽  
Vol 6 (1) ◽  
pp. 343-356
Author(s):  
K. Arathi Bhat ◽  
G. Sudhakara

Abstract In this paper, we introduce the notion of perfect matching property for a k-partition of vertex set of given graph. We consider nontrivial graphs G and GPk , the k-complement of graph G with respect to a kpartition of V(G), to prove that A(G)A(GPk ) is realizable as a graph if and only if P satis_es perfect matching property. For A(G)A(GPk ) = A(Γ) for some graph Γ, we obtain graph parameters such as chromatic number, domination number etc., for those graphs and characterization of P is given for which GPk and Γ are isomorphic. Given a 1-factor graph G with 2n vertices, we propose a partition P for which GPk is a graph of rank r and A(G)A(GPk ) is graphical, where n ≤ r ≤ 2n. Motivated by the result of characterizing decomposable Kn,n into commuting perfect matchings [2], we characterize complete k-partite graph Kn1,n2,...,nk which has a commuting decomposition into a perfect matching and its k-complement.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


Author(s):  
Hicham Meraimi ◽  
Mustapha Chellali

Let [Formula: see text] be a graph, and let [Formula: see text] be an induced path centered at [Formula: see text]. An edge lift defined on [Formula: see text] is the action of removing edges [Formula: see text] and [Formula: see text] while adding the edge [Formula: see text] to the edge set of [Formula: see text]. In this paper, we initiate the study of the effects of edge lifting on the Roman domination number of a graph, where various properties are established. A characterization of all trees for which every edge lift increases the Roman domination number is provided. Moreover, we characterize the edge lift of a graph decreasing the Roman domination number, and we show that there are no graphs with at most one cycle for which every possible edge lift can have this property.


2009 ◽  
Vol 10 (03) ◽  
pp. 205-217 ◽  
Author(s):  
WEIZHEN GU ◽  
KIRSTI WASH

For a graph G with n vertices and a permutation α on V(G), a permutation graph Pα(G) is obtained from two identical copies of G by adding an edge between v and α(V) for any v ϵ V(G). Let γ(G) be the domination number of a graph G. It has been shown that γ(G) ≤ γ(Pα(G) ≤ 2γ(G) for any permutation α on V(G). In this paper, we investigate specific graphs for which there exists a permutation α such that γ(Pα(G)) ≻ γ(G) in terms of the domination number of G or the maximum degree of G. Additionally, we construct a class of graphs for which the domination number of any permutation graph is twice the domination number of the original graph, as well as explore finding a specific graph G and permutation α for any two positive integers a and b with a ≤ b ≤ 2a, to have γ(G) = a and γ(Pα(G)) = b.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650013
Author(s):  
L. Asgharsharghi ◽  
S. M. Sheikholeslami ◽  
L. Volkmann

A 2-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of [Formula: see text]. The rainbow bondage number [Formula: see text] of a graph [Formula: see text] with maximum degree at least two is the minimum cardinality of all sets [Formula: see text] for which [Formula: see text]. Dehgardi, Sheikholeslami and Volkmann, [The [Formula: see text]-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133–139] proved that the rainbow bondage number of a planar graph does not exceed 15. In this paper, we generalize their result for graphs which admit a [Formula: see text]-cell embedding on a surface with non-negative Euler characteristic.


Sign in / Sign up

Export Citation Format

Share Document