scholarly journals Paleo - position of the South China Craton in the Rodinia Supercontinent: Evidence from the U - Pb age and Hf isotope of detrital zircon from the Nam Co Complex

2021 ◽  
Vol 62 (3) ◽  
pp. 1-12
Author(s):  

To constrain the paleo - positions of the South China Cratons in the Rodinia Supercontinent during the Neoproterozoic, the in - situ U - Pb dating, and Hf isotope analysis of the detrital zircon from the Nam Co Complex, Song Ma Suture zone, northwestern Vietnam was performed. The U - Pb isotopic dating on detrital zircons shows that the Nam Co Complex demonstrates the major population (>50%) of around ~850 Ma while the minor population is scattered between ~1.2÷3.0 Ga. The Neoproterozoic age spectrum exhibits a large range of the εHf(t) from strongly negative to positive values ( - 17.418022÷ 14.600527), indicating that the source of the magma for this age range has been not only derived from reworking of the Archean basement rocks, but also generated from the juvenile material. The U - Pb age distribution patterns and Hf isotopic data of the detrital zircon in the Nam Co Complex are compatible with those of the South China Craton rather than those of the Indochina Craton. The data also indicate that sedimentary protoliths of the Nam Co Complex were deposited in a convergent - related basin along the southwestern margin of the South China Craton during the Neoproterozoic. Combined with the similarities of the detrital zircon age between western Cathaysia, Indochina, East Antarctica and East India, it is proved that the South China Craton was situated at the margin of the Rodinia Supercontinent and in close proximity to the Indochina, East Antarctica and East India.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-10
Author(s):  
Qian Liu ◽  
Guochun Zhao ◽  
Jianhua Li ◽  
Jinlong Yao ◽  
Yigui Han ◽  
...  

Abstract The location of the Tarim craton during the assembly and breakup of the Rodinia supercontinent remains enigmatic, with some models advocating a Tarim-Australia connection and others a location at the heart of the unified Rodinia supercontinent between Australia and Laurentia. In this study, our new zircon U-Pb dating results suggest that middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen of the southeastern Tarim craton were deposited between ca. 880 and 760 Ma in a rifting-related setting slightly prior to the breakup of Rodinia at ca. 750 Ma. A compilation of existing Neoproterozoic geological records also indicates that the Altyn Tagh orogen of the southeastern Tarim craton underwent collision at ca. 1.0-0.9 Ga and rifting at ca. 850-600 Ma related to the assembly and breakup of Rodinia. Furthermore, in order to establish the paleoposition of the Tarim craton with respect to Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks were compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among rocks of the southeastern Tarim craton, Cathaysia, and North India but exclude a northern or western Australian affinity. In addition, detrital zircons from the northern Tarim craton exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, comparable to the northern and western Yangtze block. Together with comparable geological responses to the assembly and breakup of the Rodinia supercontinent, we offer a new perspective of the location of the Tarim craton between South China and North India in the periphery of Rodinia.


Author(s):  
Guangyou Zhu ◽  
Huichuan Liu ◽  
Tingting Zhang ◽  
Weiyan Chen ◽  
Jianwei Xiao ◽  
...  

Contrasting models for internal versus external locations of the South China Craton (SCC) in the supercontinent Rodinia and associated mantle plume or ocean subduction dominated tectonic processes can be resolved by detrital zircon U-Pb dating and Lu-Hf isotopic analyses on the Cryogenian Nanhua Supergroup in the central SCC. Our results show that samples from the lower Liantuo, Tiesi’ao, and Datangpo formations of the Nanhua Supergroup show three age peaks at 2.50 Ga, 2.05 Ga, and 0.85 Ga, and those of the upper Nantuo Formation yield four peaks at 2.50 Ga, 2.05 Ga, 0.85 Ga, and 0.65 Ga. The Archean and Paleoproterozoic (1.80−2.10 Ga) zircons have εHf(t) values of −16.3 to +4.7 and −23.0 to +4.2, and may be sourced from the Kongling and Douling complexes and Paleoproterozoic intrusions in the northern Yangtze Block, respectively. Early Neoproterozoic (0.70−0.96 Ga) zircon grains show variable εHf(t) values of −20.0 to +15.0. In combination with the absence of Mesoproterozoic detrital zircons in the Nanhua Supergroup, huge volumes of Neoproterozoic granitic intrusions in the northern Yangtze Block are the potential sources for the 0.70−0.96 Ga detrital zircons. Only the siltstone of the Nantuo Formation has late Neoproterozoic (0.63−0.69 Ga) detrital zircons with high and positive εHf(t) values (+7.9 to +9.4). Several granitoid intrusions (0.63−0.68 Ga) in the Wudang and Ankang uplift of the South Qinling belt in the northern Yangtze Block provide the late Neoproterozoic detrital zircons of the Nantuo Formation. These provenance analyses of the Nanhua Supergroup indicate an interior source from the SCC, rather than an exterior source from the Laurentia and Australia cratons. The Neoproterozoic rift basins and magmatic rocks in the SCC were produced by secular episodic subductions and back-arc extensions, rather than a Neoproterozoic super-mantle plume. The SCC occupied a peripheral position adjacent to northern India in Rodinia during the Neoproterozoic. These conclusions will promote our understanding of genetic mechanism and distribution prediction of the several Cryogenian−Cambrian black-shale layers and excellent source rocks in the SCC.


2012 ◽  
Vol 149 (6) ◽  
pp. 1124-1131 ◽  
Author(s):  
LIANG DUAN ◽  
QING-REN MENG ◽  
GUO-LI WU ◽  
SHOU-XIAN MA ◽  
LIN LI

AbstractLA-ICP-MS U–Pb dating of Lower Devonian detrital zircon samples from three representative sections in the South China block yields dominant Grenvillian and Pan-African populations, similar to the age distribution of early Palaeozoic samples from Gondwana, the Tethyan Himalaya and West Australia, in particular. Hf isotopic compositions indicate the contributions of juvenile crust at 1.6 Ga and 2.5 Ga, and bear a resemblance to their counterparts from SE Australia and West Antarctica, revealing the mixed origin of the Pan-African and Grenvillian grains from juvenile magmas and melting of pre-existing crustal rocks. These results suggest that the South China block should be considered an integral part of East Gondwana in early Palaeozoic time, rather than a discrete continental block in the Palaeo-Pacific or a fragment of Laurentia.


Author(s):  
Chao Wang ◽  
Wenjian Jiang ◽  
Xin Shi ◽  
Huaisheng Zhang

The Central Asia orogenic belt contains a wide range of structural elements, including micro continent, back arc system, ocean island/plateau, ophiolite and subduction accretion complex. But its final closing time has been controversial. Based on the magmatic age of the surrounding orogenic belt, the source of this set of clastic sediments is determined, which provides new important evidence for the evolution of the South Tianshan orogenic belt. The results show that the Jurassic detrital zircons from the study area were mainly derived from magmatic zircons and are deposited in a proximal source. The detrital zircon age of the Lower Jurassic Badaowan and Sangonghe Formation are concentrated in 290–260 Ma, and in 350–290 Ma and 460–390 Ma, respectively. The detrital zircon age of the Middle Jurassic Xishanyao Formation concentrates in 370–320 Ma and 450–390 Ma. There are very few zircons from the Precambrian period. These ages are consistent with the timing, indicating these clastic sediments were mainly originated from the southern margin of the Yili - Middle Tianshan Block. The Late Permian - Middle Triassic detrital zircons almost do not exist, implying that there were no contemporary magmatism related to collision or post-collision in the South Tianshan district, its complex evolution and orogenic stage are still a challenging topic. In the ancient active plate margin, the sedimentary records in the pre-arc basin can provide more information about the magmatic arc and basin-orogen coupling than the present exposed arc itself. The rhyolite, trachyte, and trachyandesite of the Dahalajunshan Formation were widely developed in the Yili - Middle Tianshan Block during the Early Carboniferous. During the formation of Wulang Formation in the Early Permian, a large number of rhyolite were developed. The age data of 75 detrital zircons were obtained from the sandstone (J1s-5) of the Sangonghe Formation, of which 74 zircons have a concordance degree of over 90%, and their age data also fall on the harmonic curv. In addition, the age of the youngest zircons increased gradually from Early to Middle Jurassic, indicating that the sediments in this period had the feature of uncovering. Our study provides a good reference for the analysis of provenance and regional tectonic evolution.


2021 ◽  
pp. 1-22
Author(s):  
Farzaneh Shakerardakani ◽  
Franz Neubauer ◽  
Xiaoming Liu ◽  
Yunpeng Dong ◽  
Behzad Monfaredi ◽  
...  

Abstract New detrital U–Pb zircon ages from the Sanandaj–Sirjan metamorphic zone in the Zagros orogenic belt allow discussion of models of the late Neoproterozoic to early Palaeozoic plate tectonic evolution and position of the Iranian microcontinent within a global framework. A total of 194 valid age values from 362 zircon grains were obtained from three garnet-micaschist samples. The most abundant detrital zircon population included Ediacaran ages, with the main age peak at 0.60 Ga. Other significant age peaks are at c. 0.64–0.78 Ga, 0.80–0.91 Ga, 0.94–1.1 Ga, 1.8–2.0 Ga and 2.1–2.5 Ga. The various Palaeozoic zircon age peaks could be explained by sediment supply from sources within the Iranian microcontinent. However, Precambrian ages were found, implying a non-Iranian provenance or recycling of upper Ediacaran–Palaeozoic clastic rocks. Trace-element geochemical fingerprints show that most detrital zircons were sourced from continental magmatic settings. In this study, the late Grenvillian age population at c. 0.94–1.1 Ga is used to unravel the palaeogeographic origin of the Sanandaj–Sirjan metamorphic zone. This Grenvillian detrital age population relates to the ‘Gondwana superfan’ sediments, as found in many Gondwana-derived terranes within the European Variscides and Turkish terranes, but also to units further east, e.g. in the South China block. Biogeographic evidence proves that the Iranian microcontinent developed on the same North Gondwana margin extending from the South China block via Iran further to the west.


2020 ◽  
pp. 1-16
Author(s):  
Jian-Hui Liu ◽  
Fu-Lai Liu ◽  
Zheng-Jiang Ding ◽  
Hong Yang ◽  
Ping-Hua Liu ◽  
...  

Abstract The Wulian complex is located on the northern margin of the Sulu orogenic belt, and was formed by collision between the North China Craton (NCC) to the north and South China Craton (SCC) to the south. It consists of the metasedimentary Wulian Group, gneissic granite and meta-diorite. The U–Pb analyses for the detrital zircons from the Wulian Group exhibit one predominant age population of 2600–2400 Ma with a peak at c. 2.5 Ga and several secondary age populations of > 3000, 3000–2800, 2800–2600, 2200–2000, 1900–1800, 1500–1300 and 1250–950 Ma; some metamorphic zircons have metamorphic ages of c. 2.7, 2.55–2.45, 2.1–2.0 and 1.95–1.80 Ga, which are consistent with magmatic-metamorphic events in the SCC. Additionally, the Wulian Group was intruded by the gneissic granite and meta-diorite at c. 0.76 Ga, attributed to Neoproterozoic syn-rifting bimodal magmatic activity in the SCC and derived from partial melting of Archaean continental crust and depleted mantle, respectively. The Wulian Group therefore has tectonic affinity to the SCC and was mainly sourced from the SCC. The detrital zircons have positive and negative ϵHf(t) values, indicating that their source rocks were derived from reworking of both ancient and juvenile crustal rocks. The major early Precambrian crustal growth took place during c. 3.4–2.5 Ga with a dominant peak at 2.96 Ga and several secondary peaks at 3.27, 2.74 and 2.52 Ga. The two oldest zircons with ages of 3307 and 3347 Ma record the recycling of ancient continental crust (> 3.35 Ga) and crustal growth prior to c. 3.95 Ga in the SCC.


2019 ◽  
pp. 36-61
Author(s):  
S. V. Rud’ko ◽  
N. B. Kuznetsov ◽  
E. A. Belousova ◽  
T. V. Romanyuk

The U–Pb dating and Hf isotope systematics of detrital zircons from a sandstone interbed in the section of the upper conglomerate sequence of the Mt. South Demerdzhi were carried out. The dominant populations of detrital zircons in the studied sample characterize episodes of magmatic activity within the source of the Upper Jurassic conglomerates. Magmatism was manifested in the Vendian-Cambrian, Carbon-Triassic and Late Jurassic. The åHf values of detrital zircons of these ages indicate the insignificant role of the ancient (Archean–Early Proterozoic) continental crust in the protolith of magmatic chambers. The similarity of the detrital zircons age distribution from the Middle Jurassic and Upper Jurassic conglomerate strata suggests that they are molasses of the Cimmerian orogen. The absence of products of Middle Jurassic magmatism in molasses of the Cimmerian orogen, which we fixed, limits position of the Cimmerian orogen in the southern part of the Scythian plate. It is shown that the primary source of the Precambrian detrital zircons were mobilized within the Cimmerian orogen the crustal fragments of the Peri-Gondwanan origin, rather than the basement complexes of the East European Platform, similar to the complexes of the Ukrainian shield. The reconstruction of the main stages of the accumulation of the coarse-grained strata of the Mountaineous Crimea in the context of the tectonic evolution of the southern margin of Laurasia during the Mesozoic is presented.


Sign in / Sign up

Export Citation Format

Share Document